|
- # Copyright (c) OpenMMLab. All rights reserved.
- import torch
- import torch.nn as nn
- from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
- from mmcv.runner import BaseModule
-
-
- class DarknetBottleneck(BaseModule):
- """The basic bottleneck block used in Darknet.
-
- Each ResBlock consists of two ConvModules and the input is added to the
- final output. Each ConvModule is composed of Conv, BN, and LeakyReLU.
- The first convLayer has filter size of 1x1 and the second one has the
- filter size of 3x3.
-
- Args:
- in_channels (int): The input channels of this Module.
- out_channels (int): The output channels of this Module.
- expansion (int): The kernel size of the convolution. Default: 0.5
- add_identity (bool): Whether to add identity to the out.
- Default: True
- use_depthwise (bool): Whether to use depthwise separable convolution.
- Default: False
- conv_cfg (dict): Config dict for convolution layer. Default: None,
- which means using conv2d.
- norm_cfg (dict): Config dict for normalization layer.
- Default: dict(type='BN').
- act_cfg (dict): Config dict for activation layer.
- Default: dict(type='Swish').
- """
-
- def __init__(self,
- in_channels,
- out_channels,
- expansion=0.5,
- add_identity=True,
- use_depthwise=False,
- conv_cfg=None,
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish'),
- init_cfg=None):
- super().__init__(init_cfg)
- hidden_channels = int(out_channels * expansion)
- conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
- self.conv1 = ConvModule(
- in_channels,
- hidden_channels,
- 1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- self.conv2 = conv(
- hidden_channels,
- out_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- self.add_identity = \
- add_identity and in_channels == out_channels
-
- def forward(self, x):
- identity = x
- out = self.conv1(x)
- out = self.conv2(out)
-
- if self.add_identity:
- return out + identity
- else:
- return out
-
-
- class CSPLayer(BaseModule):
- """Cross Stage Partial Layer.
-
- Args:
- in_channels (int): The input channels of the CSP layer.
- out_channels (int): The output channels of the CSP layer.
- expand_ratio (float): Ratio to adjust the number of channels of the
- hidden layer. Default: 0.5
- num_blocks (int): Number of blocks. Default: 1
- add_identity (bool): Whether to add identity in blocks.
- Default: True
- use_depthwise (bool): Whether to depthwise separable convolution in
- blocks. Default: False
- conv_cfg (dict, optional): Config dict for convolution layer.
- Default: None, which means using conv2d.
- norm_cfg (dict): Config dict for normalization layer.
- Default: dict(type='BN')
- act_cfg (dict): Config dict for activation layer.
- Default: dict(type='Swish')
- """
-
- def __init__(self,
- in_channels,
- out_channels,
- expand_ratio=0.5,
- num_blocks=1,
- add_identity=True,
- use_depthwise=False,
- conv_cfg=None,
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish'),
- init_cfg=None):
- super().__init__(init_cfg)
- mid_channels = int(out_channels * expand_ratio)
- self.main_conv = ConvModule(
- in_channels,
- mid_channels,
- 1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- self.short_conv = ConvModule(
- in_channels,
- mid_channels,
- 1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- self.final_conv = ConvModule(
- 2 * mid_channels,
- out_channels,
- 1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
-
- self.blocks = nn.Sequential(*[
- DarknetBottleneck(
- mid_channels,
- mid_channels,
- 1.0,
- add_identity,
- use_depthwise,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg) for _ in range(num_blocks)
- ])
-
- def forward(self, x):
- x_short = self.short_conv(x)
-
- x_main = self.main_conv(x)
- x_main = self.blocks(x_main)
-
- x_final = torch.cat((x_main, x_short), dim=1)
- return self.final_conv(x_final)
|