|
- # Copyright (c) OpenMMLab. All rights reserved.
- import mmcv
- import torch.nn as nn
-
- from ..builder import LOSSES
- from .utils import weighted_loss
-
-
- @mmcv.jit(derivate=True, coderize=True)
- @weighted_loss
- def gaussian_focal_loss(pred, gaussian_target, alpha=2.0, gamma=4.0):
- """`Focal Loss <https://arxiv.org/abs/1708.02002>`_ for targets in gaussian
- distribution.
-
- Args:
- pred (torch.Tensor): The prediction.
- gaussian_target (torch.Tensor): The learning target of the prediction
- in gaussian distribution.
- alpha (float, optional): A balanced form for Focal Loss.
- Defaults to 2.0.
- gamma (float, optional): The gamma for calculating the modulating
- factor. Defaults to 4.0.
- """
- eps = 1e-12
- pos_weights = gaussian_target.eq(1)
- neg_weights = (1 - gaussian_target).pow(gamma)
- pos_loss = -(pred + eps).log() * (1 - pred).pow(alpha) * pos_weights
- neg_loss = -(1 - pred + eps).log() * pred.pow(alpha) * neg_weights
- return pos_loss + neg_loss
-
-
- @LOSSES.register_module()
- class GaussianFocalLoss(nn.Module):
- """GaussianFocalLoss is a variant of focal loss.
-
- More details can be found in the `paper
- <https://arxiv.org/abs/1808.01244>`_
- Code is modified from `kp_utils.py
- <https://github.com/princeton-vl/CornerNet/blob/master/models/py_utils/kp_utils.py#L152>`_ # noqa: E501
- Please notice that the target in GaussianFocalLoss is a gaussian heatmap,
- not 0/1 binary target.
-
- Args:
- alpha (float): Power of prediction.
- gamma (float): Power of target for negative samples.
- reduction (str): Options are "none", "mean" and "sum".
- loss_weight (float): Loss weight of current loss.
- """
-
- def __init__(self,
- alpha=2.0,
- gamma=4.0,
- reduction='mean',
- loss_weight=1.0):
- super(GaussianFocalLoss, self).__init__()
- self.alpha = alpha
- self.gamma = gamma
- self.reduction = reduction
- self.loss_weight = loss_weight
-
- def forward(self,
- pred,
- target,
- weight=None,
- avg_factor=None,
- reduction_override=None):
- """Forward function.
-
- Args:
- pred (torch.Tensor): The prediction.
- target (torch.Tensor): The learning target of the prediction
- in gaussian distribution.
- weight (torch.Tensor, optional): The weight of loss for each
- prediction. Defaults to None.
- avg_factor (int, optional): Average factor that is used to average
- the loss. Defaults to None.
- reduction_override (str, optional): The reduction method used to
- override the original reduction method of the loss.
- Defaults to None.
- """
- assert reduction_override in (None, 'none', 'mean', 'sum')
- reduction = (
- reduction_override if reduction_override else self.reduction)
- loss_reg = self.loss_weight * gaussian_focal_loss(
- pred,
- target,
- weight,
- alpha=self.alpha,
- gamma=self.gamma,
- reduction=reduction,
- avg_factor=avg_factor)
- return loss_reg
|