|
- # Copyright (c) OpenMMLab. All rights reserved.
- import copy
-
- import torch.nn as nn
- from mmcv.cnn import ConvModule, Scale
-
- from mmdet.models.dense_heads.fcos_head import FCOSHead
- from ..builder import HEADS
-
-
- @HEADS.register_module()
- class NASFCOSHead(FCOSHead):
- """Anchor-free head used in `NASFCOS <https://arxiv.org/abs/1906.04423>`_.
-
- It is quite similar with FCOS head, except for the searched structure of
- classification branch and bbox regression branch, where a structure of
- "dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead.
- """
-
- def __init__(self, *args, init_cfg=None, **kwargs):
- if init_cfg is None:
- init_cfg = [
- dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']),
- dict(
- type='Normal',
- std=0.01,
- override=[
- dict(name='conv_reg'),
- dict(name='conv_centerness'),
- dict(
- name='conv_cls',
- type='Normal',
- std=0.01,
- bias_prob=0.01)
- ]),
- ]
- super(NASFCOSHead, self).__init__(*args, init_cfg=init_cfg, **kwargs)
-
- def _init_layers(self):
- """Initialize layers of the head."""
- dconv3x3_config = dict(
- type='DCNv2',
- kernel_size=3,
- use_bias=True,
- deform_groups=2,
- padding=1)
- conv3x3_config = dict(type='Conv', kernel_size=3, padding=1)
- conv1x1_config = dict(type='Conv', kernel_size=1)
-
- self.arch_config = [
- dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config
- ]
- self.cls_convs = nn.ModuleList()
- self.reg_convs = nn.ModuleList()
- for i, op_ in enumerate(self.arch_config):
- op = copy.deepcopy(op_)
- chn = self.in_channels if i == 0 else self.feat_channels
- assert isinstance(op, dict)
- use_bias = op.pop('use_bias', False)
- padding = op.pop('padding', 0)
- kernel_size = op.pop('kernel_size')
- module = ConvModule(
- chn,
- self.feat_channels,
- kernel_size,
- stride=1,
- padding=padding,
- norm_cfg=self.norm_cfg,
- bias=use_bias,
- conv_cfg=op)
-
- self.cls_convs.append(copy.deepcopy(module))
- self.reg_convs.append(copy.deepcopy(module))
-
- self.conv_cls = nn.Conv2d(
- self.feat_channels, self.cls_out_channels, 3, padding=1)
- self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
- self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
-
- self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
|