|
- _base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py'
- model = dict(
- backbone=dict(
- _delete_=True,
- type='HRNet',
- extra=dict(
- stage1=dict(
- num_modules=1,
- num_branches=1,
- block='BOTTLENECK',
- num_blocks=(4, ),
- num_channels=(64, )),
- stage2=dict(
- num_modules=1,
- num_branches=2,
- block='BASIC',
- num_blocks=(4, 4),
- num_channels=(32, 64)),
- stage3=dict(
- num_modules=4,
- num_branches=3,
- block='BASIC',
- num_blocks=(4, 4, 4),
- num_channels=(32, 64, 128)),
- stage4=dict(
- num_modules=3,
- num_branches=4,
- block='BASIC',
- num_blocks=(4, 4, 4, 4),
- num_channels=(32, 64, 128, 256))),
- init_cfg=dict(
- type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')),
- neck=dict(
- _delete_=True,
- type='HRFPN',
- in_channels=[32, 64, 128, 256],
- out_channels=256))
- # learning policy
- lr_config = dict(step=[16, 19])
- runner = dict(type='EpochBasedRunner', max_epochs=20)
|