You can not select more than 25 topics
Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
- Collections:
- - Name: CentripetalNet
- Metadata:
- Training Data: COCO
- Training Techniques:
- - Adam
- Training Resources: 16x V100 GPUs
- Architecture:
- - Corner Pooling
- - Stacked Hourglass Network
- Paper:
- URL: https://arxiv.org/abs/2003.09119
- Title: 'CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection'
- README: configs/centripetalnet/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.5.0/mmdet/models/detectors/cornernet.py#L9
- Version: v2.5.0
-
- Models:
- - Name: centripetalnet_hourglass104_mstest_16x6_210e_coco
- In Collection: CentripetalNet
- Config: configs/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco.py
- Metadata:
- Batch Size: 96
- Training Memory (GB): 16.7
- inference time (ms/im):
- - value: 270.27
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 210
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 44.8
- Weights: https://download.openmmlab.com/mmdetection/v2.0/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco/centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804-3ccc61e5.pth
|