|
- # Copyright (c) OpenMMLab. All rights reserved.
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from mmcv.cnn import CONV_LAYERS
-
- from .builder import LINEAR_LAYERS
-
-
- @LINEAR_LAYERS.register_module(name='NormedLinear')
- class NormedLinear(nn.Linear):
- """Normalized Linear Layer.
-
- Args:
- tempeature (float, optional): Tempeature term. Default to 20.
- power (int, optional): Power term. Default to 1.0.
- eps (float, optional): The minimal value of divisor to
- keep numerical stability. Default to 1e-6.
- """
-
- def __init__(self, *args, tempearture=20, power=1.0, eps=1e-6, **kwargs):
- super(NormedLinear, self).__init__(*args, **kwargs)
- self.tempearture = tempearture
- self.power = power
- self.eps = eps
- self.init_weights()
-
- def init_weights(self):
- nn.init.normal_(self.weight, mean=0, std=0.01)
- if self.bias is not None:
- nn.init.constant_(self.bias, 0)
-
- def forward(self, x):
- weight_ = self.weight / (
- self.weight.norm(dim=1, keepdim=True).pow(self.power) + self.eps)
- x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps)
- x_ = x_ * self.tempearture
-
- return F.linear(x_, weight_, self.bias)
-
-
- @CONV_LAYERS.register_module(name='NormedConv2d')
- class NormedConv2d(nn.Conv2d):
- """Normalized Conv2d Layer.
-
- Args:
- tempeature (float, optional): Tempeature term. Default to 20.
- power (int, optional): Power term. Default to 1.0.
- eps (float, optional): The minimal value of divisor to
- keep numerical stability. Default to 1e-6.
- norm_over_kernel (bool, optional): Normalize over kernel.
- Default to False.
- """
-
- def __init__(self,
- *args,
- tempearture=20,
- power=1.0,
- eps=1e-6,
- norm_over_kernel=False,
- **kwargs):
- super(NormedConv2d, self).__init__(*args, **kwargs)
- self.tempearture = tempearture
- self.power = power
- self.norm_over_kernel = norm_over_kernel
- self.eps = eps
-
- def forward(self, x):
- if not self.norm_over_kernel:
- weight_ = self.weight / (
- self.weight.norm(dim=1, keepdim=True).pow(self.power) +
- self.eps)
- else:
- weight_ = self.weight / (
- self.weight.view(self.weight.size(0), -1).norm(
- dim=1, keepdim=True).pow(self.power)[..., None, None] +
- self.eps)
- x_ = x / (x.norm(dim=1, keepdim=True).pow(self.power) + self.eps)
- x_ = x_ * self.tempearture
-
- if hasattr(self, 'conv2d_forward'):
- x_ = self.conv2d_forward(x_, weight_)
- else:
- if torch.__version__ >= '1.8':
- x_ = self._conv_forward(x_, weight_, self.bias)
- else:
- x_ = self._conv_forward(x_, weight_)
- return x_
|