|
- import pytest
- import torch
-
- from mmdet.models.backbones.swin import SwinBlock, SwinTransformer
-
-
- def test_swin_block():
- # test SwinBlock structure and forward
- block = SwinBlock(embed_dims=64, num_heads=4, feedforward_channels=256)
- assert block.ffn.embed_dims == 64
- assert block.attn.w_msa.num_heads == 4
- assert block.ffn.feedforward_channels == 256
- x = torch.randn(1, 56 * 56, 64)
- x_out = block(x, (56, 56))
- assert x_out.shape == torch.Size([1, 56 * 56, 64])
-
- # Test BasicBlock with checkpoint forward
- block = SwinBlock(
- embed_dims=64, num_heads=4, feedforward_channels=256, with_cp=True)
- assert block.with_cp
- x = torch.randn(1, 56 * 56, 64)
- x_out = block(x, (56, 56))
- assert x_out.shape == torch.Size([1, 56 * 56, 64])
-
-
- def test_swin_transformer():
- """Test Swin Transformer backbone."""
-
- with pytest.raises(TypeError):
- # Pretrained arg must be str or None.
- SwinTransformer(pretrained=123)
-
- with pytest.raises(AssertionError):
- # Because swin uses non-overlapping patch embed, so the stride of patch
- # embed must be equal to patch size.
- SwinTransformer(strides=(2, 2, 2, 2), patch_size=4)
-
- # test pretrained image size
- with pytest.raises(AssertionError):
- SwinTransformer(pretrain_img_size=(224, 224, 224))
-
- # Test absolute position embedding
- temp = torch.randn((1, 3, 224, 224))
- model = SwinTransformer(pretrain_img_size=224, use_abs_pos_embed=True)
- model.init_weights()
- model(temp)
-
- # Test patch norm
- model = SwinTransformer(patch_norm=False)
- model(temp)
-
- # Test normal inference
- temp = torch.randn((1, 3, 32, 32))
- model = SwinTransformer()
- outs = model(temp)
- assert outs[0].shape == (1, 96, 8, 8)
- assert outs[1].shape == (1, 192, 4, 4)
- assert outs[2].shape == (1, 384, 2, 2)
- assert outs[3].shape == (1, 768, 1, 1)
-
- # Test abnormal inference size
- temp = torch.randn((1, 3, 31, 31))
- model = SwinTransformer()
- outs = model(temp)
- assert outs[0].shape == (1, 96, 8, 8)
- assert outs[1].shape == (1, 192, 4, 4)
- assert outs[2].shape == (1, 384, 2, 2)
- assert outs[3].shape == (1, 768, 1, 1)
-
- # Test abnormal inference size
- temp = torch.randn((1, 3, 112, 137))
- model = SwinTransformer()
- outs = model(temp)
- assert outs[0].shape == (1, 96, 28, 35)
- assert outs[1].shape == (1, 192, 14, 18)
- assert outs[2].shape == (1, 384, 7, 9)
- assert outs[3].shape == (1, 768, 4, 5)
-
- model = SwinTransformer(frozen_stages=4)
- model.train()
- for p in model.parameters():
- assert not p.requires_grad
|