|
- # Copyright (c) OpenMMLab. All rights reserved.
- import torch
-
- from mmdet.core import multi_apply
- from ..builder import HEADS
- from ..losses import CrossEntropyLoss, SmoothL1Loss, carl_loss, isr_p
- from .ssd_head import SSDHead
-
-
- # TODO: add loss evaluator for SSD
- @HEADS.register_module()
- class PISASSDHead(SSDHead):
-
- def loss(self,
- cls_scores,
- bbox_preds,
- gt_bboxes,
- gt_labels,
- img_metas,
- gt_bboxes_ignore=None):
- """Compute losses of the head.
-
- Args:
- cls_scores (list[Tensor]): Box scores for each scale level
- Has shape (N, num_anchors * num_classes, H, W)
- bbox_preds (list[Tensor]): Box energies / deltas for each scale
- level with shape (N, num_anchors * 4, H, W)
- gt_bboxes (list[Tensor]): Ground truth bboxes of each image
- with shape (num_obj, 4).
- gt_labels (list[Tensor]): Ground truth labels of each image
- with shape (num_obj, 4).
- img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- gt_bboxes_ignore (list[Tensor]): Ignored gt bboxes of each image.
- Default: None.
-
- Returns:
- dict: Loss dict, comprise classification loss regression loss and
- carl loss.
- """
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- assert len(featmap_sizes) == self.prior_generator.num_levels
-
- device = cls_scores[0].device
-
- anchor_list, valid_flag_list = self.get_anchors(
- featmap_sizes, img_metas, device=device)
- cls_reg_targets = self.get_targets(
- anchor_list,
- valid_flag_list,
- gt_bboxes,
- img_metas,
- gt_bboxes_ignore_list=gt_bboxes_ignore,
- gt_labels_list=gt_labels,
- label_channels=1,
- unmap_outputs=False,
- return_sampling_results=True)
- if cls_reg_targets is None:
- return None
- (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
- num_total_pos, num_total_neg, sampling_results_list) = cls_reg_targets
-
- num_images = len(img_metas)
- all_cls_scores = torch.cat([
- s.permute(0, 2, 3, 1).reshape(
- num_images, -1, self.cls_out_channels) for s in cls_scores
- ], 1)
- all_labels = torch.cat(labels_list, -1).view(num_images, -1)
- all_label_weights = torch.cat(label_weights_list,
- -1).view(num_images, -1)
- all_bbox_preds = torch.cat([
- b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
- for b in bbox_preds
- ], -2)
- all_bbox_targets = torch.cat(bbox_targets_list,
- -2).view(num_images, -1, 4)
- all_bbox_weights = torch.cat(bbox_weights_list,
- -2).view(num_images, -1, 4)
-
- # concat all level anchors to a single tensor
- all_anchors = []
- for i in range(num_images):
- all_anchors.append(torch.cat(anchor_list[i]))
-
- isr_cfg = self.train_cfg.get('isr', None)
- all_targets = (all_labels.view(-1), all_label_weights.view(-1),
- all_bbox_targets.view(-1,
- 4), all_bbox_weights.view(-1, 4))
- # apply ISR-P
- if isr_cfg is not None:
- all_targets = isr_p(
- all_cls_scores.view(-1, all_cls_scores.size(-1)),
- all_bbox_preds.view(-1, 4),
- all_targets,
- torch.cat(all_anchors),
- sampling_results_list,
- loss_cls=CrossEntropyLoss(),
- bbox_coder=self.bbox_coder,
- **self.train_cfg.isr,
- num_class=self.num_classes)
- (new_labels, new_label_weights, new_bbox_targets,
- new_bbox_weights) = all_targets
- all_labels = new_labels.view(all_labels.shape)
- all_label_weights = new_label_weights.view(all_label_weights.shape)
- all_bbox_targets = new_bbox_targets.view(all_bbox_targets.shape)
- all_bbox_weights = new_bbox_weights.view(all_bbox_weights.shape)
-
- # add CARL loss
- carl_loss_cfg = self.train_cfg.get('carl', None)
- if carl_loss_cfg is not None:
- loss_carl = carl_loss(
- all_cls_scores.view(-1, all_cls_scores.size(-1)),
- all_targets[0],
- all_bbox_preds.view(-1, 4),
- all_targets[2],
- SmoothL1Loss(beta=1.),
- **self.train_cfg.carl,
- avg_factor=num_total_pos,
- num_class=self.num_classes)
-
- # check NaN and Inf
- assert torch.isfinite(all_cls_scores).all().item(), \
- 'classification scores become infinite or NaN!'
- assert torch.isfinite(all_bbox_preds).all().item(), \
- 'bbox predications become infinite or NaN!'
-
- losses_cls, losses_bbox = multi_apply(
- self.loss_single,
- all_cls_scores,
- all_bbox_preds,
- all_anchors,
- all_labels,
- all_label_weights,
- all_bbox_targets,
- all_bbox_weights,
- num_total_samples=num_total_pos)
- loss_dict = dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
- if carl_loss_cfg is not None:
- loss_dict.update(loss_carl)
- return loss_dict
|