|
- # Copyright (c) OpenMMLab. All rights reserved.
- import math
-
- import torch
- from torch.utils.data import DistributedSampler as _DistributedSampler
-
-
- class DistributedSampler(_DistributedSampler):
-
- def __init__(self,
- dataset,
- num_replicas=None,
- rank=None,
- shuffle=True,
- seed=0):
- super().__init__(
- dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
- # for the compatibility from PyTorch 1.3+
- self.seed = seed if seed is not None else 0
-
- def __iter__(self):
- # deterministically shuffle based on epoch
- if self.shuffle:
- g = torch.Generator()
- g.manual_seed(self.epoch + self.seed)
- indices = torch.randperm(len(self.dataset), generator=g).tolist()
- else:
- indices = torch.arange(len(self.dataset)).tolist()
-
- # add extra samples to make it evenly divisible
- # in case that indices is shorter than half of total_size
- indices = (indices *
- math.ceil(self.total_size / len(indices)))[:self.total_size]
- assert len(indices) == self.total_size
-
- # subsample
- indices = indices[self.rank:self.total_size:self.num_replicas]
- assert len(indices) == self.num_samples
-
- return iter(indices)
|