|
- # Copyright (c) OpenMMLab. All rights reserved.
- import collections
-
- from mmcv.utils import build_from_cfg
-
- from ..builder import PIPELINES
-
-
- @PIPELINES.register_module()
- class Compose:
- """Compose multiple transforms sequentially.
-
- Args:
- transforms (Sequence[dict | callable]): Sequence of transform object or
- config dict to be composed.
- """
-
- def __init__(self, transforms):
- assert isinstance(transforms, collections.abc.Sequence)
- self.transforms = []
- for transform in transforms:
- if isinstance(transform, dict):
- transform = build_from_cfg(transform, PIPELINES)
- self.transforms.append(transform)
- elif callable(transform):
- self.transforms.append(transform)
- else:
- raise TypeError('transform must be callable or a dict')
-
- def __call__(self, data):
- """Call function to apply transforms sequentially.
-
- Args:
- data (dict): A result dict contains the data to transform.
-
- Returns:
- dict: Transformed data.
- """
-
- for t in self.transforms:
- data = t(data)
- if data is None:
- return None
- return data
-
- def __repr__(self):
- format_string = self.__class__.__name__ + '('
- for t in self.transforms:
- format_string += '\n'
- format_string += f' {t}'
- format_string += '\n)'
- return format_string
|