|
- import logging
-
- import neptune
- from validate_utils import validate
-
- LOG = logging.getLogger(__name__)
- max_epochs = 1
-
-
- def main():
- # load dataset.
- test_data = neptune.load_test_dataset(data_format='txt', with_image=False)
-
- # read parameters from deployment config.
- class_names = neptune.context.get_parameters("class_names")
- class_names = [label.strip() for label in class_names.split(',')]
- input_shape = neptune.context.get_parameters("input_shape")
- input_shape = tuple(int(shape) for shape in input_shape.split(','))
-
- model = validate
-
- neptune.incremental_learning.evaluate(model=model,
- test_data=test_data,
- class_names=class_names,
- input_shape=input_shape)
-
-
- if __name__ == '__main__':
- main()
|