|
- import os
-
- from sedna.core.lifelong_learning import LifelongLearning
- from sedna.datasources import TxtDataParse
- from sedna.common.config import Context
-
- from accuracy import robo_accuracy
- from basemodel import Model
-
-
- def _load_txt_dataset(dataset_url):
- # use original dataset url
- original_dataset_url = Context.get_parameters('original_dataset_url', "")
- dataset_urls = dataset_url.split()
- dataset_urls = [
- os.path.join(
- os.path.dirname(original_dataset_url),
- dataset_url) for dataset_url in dataset_urls]
- return dataset_urls[:-1], dataset_urls[-1]
-
-
- def eval():
- estimator = Model(num_class=31)
- eval_dataset_url = Context.get_parameters("test_dataset_url")
- eval_data = TxtDataParse(data_type="eval", func=_load_txt_dataset)
- eval_data.parse(eval_dataset_url, use_raw=False)
-
- task_allocation = {
- "method": "TaskAllocationSimple"
- }
-
- inference_integrate = {
- "method": "InferenceIntegrateByType"
- }
-
- ll_job = LifelongLearning(estimator,
- task_definition=None,
- task_relationship_discovery=None,
- task_allocation=task_allocation,
- task_remodeling=None,
- inference_integrate=inference_integrate,
- task_update_decision=None,
- unseen_task_allocation=None,
- unseen_sample_recognition=None,
- unseen_sample_re_recognition=None
- )
-
- ll_job.evaluate(eval_data, metrics=robo_accuracy)
-
-
- if __name__ == '__main__':
- print(eval())
|