# Copyright 2021 The KubeEdge Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tensorflow as tf from sedna.datasources import TxtDataParse from sedna.common.config import Context, BaseConfig from sedna.core.incremental_learning import IncrementalLearning from interface import Estimator def _load_txt_dataset(dataset_url): # use original dataset url, # see https://github.com/kubeedge/sedna/issues/35 original_dataset_url = Context.get_parameters('original_dataset_url') return os.path.join(os.path.dirname(original_dataset_url), dataset_url) def main(): tf.set_random_seed(22) class_names = Context.get_parameters("class_names") # load dataset. train_dataset_url = BaseConfig.train_dataset_url train_data = TxtDataParse(data_type="train", func=_load_txt_dataset) train_data.parse(train_dataset_url, use_raw=True) # read parameters from deployment config. obj_threshold = Context.get_parameters("obj_threshold") nms_threshold = Context.get_parameters("nms_threshold") input_shape = Context.get_parameters("input_shape") epochs = Context.get_parameters('epochs') batch_size = Context.get_parameters('batch_size') tf.flags.DEFINE_string('train_url', default=BaseConfig.model_url, help='train url for model') tf.flags.DEFINE_string('log_url', default=None, help='log url for model') tf.flags.DEFINE_string('checkpoint_url', default=None, help='checkpoint url for model') tf.flags.DEFINE_string('model_name', default=None, help='url for train annotation files') tf.flags.DEFINE_list('class_names', default=class_names.split(','), # 'helmet,helmet-on,person,helmet-off' help='label names for the training datasets') tf.flags.DEFINE_list('input_shape', default=[int(x) for x in input_shape.split(',')], help='input_shape') # [352, 640] tf.flags.DEFINE_integer('max_epochs', default=epochs, help='training number of epochs') tf.flags.DEFINE_integer('batch_size', default=batch_size, help='training batch size') tf.flags.DEFINE_boolean('load_imagenet_weights', default=False, help='if load imagenet weights or not') tf.flags.DEFINE_string('inference_device', default='GPU', help='which type of device is used to do inference,' ' only CPU, GPU or 310D') tf.flags.DEFINE_boolean('copy_to_local', default=True, help='if load imagenet weights or not') tf.flags.DEFINE_integer('num_gpus', default=1, help='use number of gpus') tf.flags.DEFINE_boolean('finetuning', default=False, help='use number of gpus') tf.flags.DEFINE_boolean('label_changed', default=False, help='whether number of labels is changed or not') tf.flags.DEFINE_string('learning_rate', default='0.001', help='learning rate to used for the optimizer') tf.flags.DEFINE_string('obj_threshold', default=obj_threshold, help='obj threshold') tf.flags.DEFINE_string('nms_threshold', default=nms_threshold, help='nms threshold') tf.flags.DEFINE_string('net_type', default='resnet18', help='resnet18 or resnet18_nas') tf.flags.DEFINE_string('nas_sequence', default='64_1-2111-2-1112', help='resnet18 or resnet18_nas') tf.flags.DEFINE_string('deploy_model_format', default=None, help='the format for the converted model') tf.flags.DEFINE_string('result_url', default=None, help='result url for training') incremental_instance = IncrementalLearning(estimator=Estimator) return incremental_instance.train(train_data=train_data, epochs=epochs, batch_size=batch_size, class_names=class_names, input_shape=input_shape, obj_threshold=obj_threshold, nms_threshold=nms_threshold) if __name__ == '__main__': main()