import time from sedna.datasources import BaseDataSource from sedna.core.lifelong_learning import LifelongLearning from basemodel import Model def preprocess(samples): data = BaseDataSource(data_type="test") data.x = [samples] return data def postprocess(samples): image_names, imgs = [], [] for sample in samples: img = sample.get("image") image_names.append("{}.png".format(str(time.time()))) imgs.append(img) return image_names, imgs def init_ll_job(): estimator = Model(num_class=31, save_predicted_image=True, merge=True) task_allocation = { "method": "TaskAllocationDefault" } unseen_task_allocation = { "method": "UnseenTaskAllocationDefault" } ll_job = LifelongLearning( estimator, unseen_estimator=unseen_task_processing, task_definition=None, task_relationship_discovery=None, task_allocation=task_allocation, task_remodeling=None, inference_integrate=None, task_update_decision=None, unseen_task_allocation=unseen_task_allocation, unseen_sample_recognition=None, unseen_sample_re_recognition=None) return ll_job def unseen_task_processing(): return "Warning: unseen sample detected."