# Copyright 2023 The KubeEdge Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import numpy as np import torch from PIL import Image from torchvision import transforms from torch.utils.data import DataLoader from torchvision import transforms from sedna.common.config import Context from sedna.common.file_ops import FileOps from sedna.common.log import LOGGER from sedna.common.config import BaseConfig from dataloaders import custom_transforms as tr from utils.args import TrainingArguments, EvaluationArguments from estimators.train import Trainer from estimators.eval import Validator, load_my_state_dict from accuracy import accuracy def preprocess_url(image_urls): transformed_images = [] for paths in image_urls: if len(paths) == 2: img_path, depth_path = paths _img = Image.open(img_path).convert( 'RGB').resize((2048, 1024), Image.BILINEAR) _depth = Image.open(depth_path).resize( (2048, 1024), Image.BILINEAR) else: img_path = paths[0] _img = Image.open(img_path).convert( 'RGB').resize((2048, 1024), Image.BILINEAR) _depth = _img sample = {'image': _img, 'depth': _depth, 'label': _img} composed_transforms = transforms.Compose([ tr.Normalize( mean=( 0.485, 0.456, 0.406), std=( 0.229, 0.224, 0.225)), tr.ToTensor()]) transformed_images.append((composed_transforms(sample), img_path)) return transformed_images def preprocess_frames(frames): composed_transforms = transforms.Compose([ tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) trainsformed_frames = [] for frame in frames: img = frame.get('image') img = cv2.resize(np.array(img), (2048, 1024), interpolation=cv2.INTER_CUBIC) img = Image.fromarray(np.array(img)) sample = {'image': img, "depth": img, "label": img} trainsformed_frames.append((composed_transforms(sample), "")) return trainsformed_frames class Estimator: def __init__(self, **kwargs): self.train_args = TrainingArguments(**kwargs) self.val_args = EvaluationArguments(**kwargs) self.train_args.resume = Context.get_parameters( "PRETRAINED_MODEL_URL", None) self.trainer = None self.train_model_url = None label_save_dir = Context.get_parameters( "INFERENCE_RESULT_DIR", os.path.join(BaseConfig.data_path_prefix, "inference_results")) self.val_args.color_label_save_path = os.path.join( label_save_dir, "color") self.val_args.merge_label_save_path = os.path.join( label_save_dir, "merge") self.val_args.label_save_path = os.path.join(label_save_dir, "label") self.val_args.weight_path = kwargs.get("weight_path") self.validator = Validator(self.val_args) def train(self, train_data, valid_data=None, **kwargs): self.trainer = Trainer( self.train_args, train_data=train_data, valid_data=valid_data) LOGGER.info("Total epoches: {}".format(self.trainer.args.epochs)) for epoch in range( self.trainer.args.start_epoch, self.trainer.args.epochs): if epoch == 0 and self.trainer.val_loader: self.trainer.validation(epoch) self.trainer.training(epoch) if self.trainer.args.no_val and \ (epoch % self.trainer.args.eval_interval == (self.trainer.args.eval_interval - 1) or epoch == self.trainer.args.epochs - 1): # save checkpoint when it meets eval_interval # or the training finishes is_best = False train_model_url = self.trainer.saver.save_checkpoint({ 'epoch': epoch + 1, 'state_dict': self.trainer.model.state_dict(), 'optimizer': self.trainer.optimizer.state_dict(), 'best_pred': self.trainer.best_pred, }, is_best) self.trainer.writer.close() self.train_model_url = train_model_url return {"mIoU": 0 if not valid_data else self.trainer.validation(epoch)} def predict(self, data, **kwargs): if isinstance(data[0], dict): data = preprocess_frames(data) if isinstance(data[0], np.ndarray): data = preprocess_url(data) self.validator.test_loader = DataLoader( data, batch_size=self.val_args.test_batch_size, shuffle=False, pin_memory=False) return self.validator.validate() def evaluate(self, data, **kwargs): predictions = self.predict(data.x) return accuracy(data.y, predictions) def load(self, model_url, **kwargs): if model_url: self.validator.new_state_dict = torch.load(model_url) self.validator.model = load_my_state_dict( self.validator.model, self.validator.new_state_dict['state_dict']) self.train_args.resume = model_url else: raise Exception("model url does not exist.") def save(self, model_path=None): if not model_path: LOGGER.warning(f"Not specify model path.") return self.train_model_url return FileOps.upload(self.train_model_url, model_path)