import os os.environ["TEST_DATASET_URL"] = "/home/lsq/RFNet/data_index/test.txt" os.environ["MODEL_URLS"] = "s3://kubeedge/sedna-robo/kb/index.pkl" os.environ["OUTPUT_URL"] = "s3://kubeedge/sedna-robo/kb_next/" os.environ["KB_SERVER"] = "http://0.0.0.0:9020" os.environ["operator"] = "<" os.environ["model_threshold"] = "0.01" os.environ["S3_ENDPOINT_URL"] = "https://obs.cn-north-1.myhuaweicloud.com" os.environ["SECRET_ACCESS_KEY"] = "OYPxi4uD9k5E90z0Od3Ug99symbJZ0AfyB4oveQc" os.environ["ACCESS_KEY_ID"] = "EMPTKHQUGPO2CDUFD2YR" from sedna.core.lifelong_learning import LifelongLearning from sedna.datasources import TxtDataParse from sedna.common.config import Context from accuracy import accuracy from basemodel import Model def _load_txt_dataset(dataset_url): # use original dataset url original_dataset_url = Context.get_parameters('original_dataset_url', "") dataset_urls = dataset_url.split() dataset_urls = [ os.path.join( os.path.dirname(original_dataset_url), dataset_url) for dataset_url in dataset_urls] return dataset_urls[:-1], dataset_urls[-1] def eval(): estimator = Model(num_class=31) eval_dataset_url = Context.get_parameters("test_dataset_url") eval_data = TxtDataParse(data_type="eval", func=_load_txt_dataset) eval_data.parse(eval_dataset_url, use_raw=False) task_allocation = { "method": "TaskAllocationSimple" } ll_job = LifelongLearning(estimator, task_definition=None, task_relationship_discovery=None, task_allocation=task_allocation, task_remodeling=None, inference_integrate=None, task_update_decision=None, unseen_task_allocation=None, unseen_sample_recognition=None, unseen_sample_re_recognition=None ) ll_job.evaluate(eval_data, metrics=accuracy) if __name__ == '__main__': print(eval())