|
|
|
@@ -49,28 +49,29 @@ class BackendBase: |
|
|
|
return kwargs |
|
|
|
return {k: v for k, v in kwargs.items() if k in need_kw.args} |
|
|
|
|
|
|
|
def train(self, **kwargs): |
|
|
|
def train(self, *args, **kwargs): |
|
|
|
"""Train model.""" |
|
|
|
if callable(self.estimator): |
|
|
|
varkw = self.parse_kwargs(self.estimator, **kwargs) |
|
|
|
self.estimator = self.estimator(**varkw) |
|
|
|
varkw = self.parse_kwargs(self.estimator.train, **kwargs) |
|
|
|
return self.estimator.train(**varkw) |
|
|
|
fit_method = getattr(self.estimator, "fit", self.estimator.train) |
|
|
|
varkw = self.parse_kwargs(fit_method, **kwargs) |
|
|
|
return fit_method(*args, **varkw) |
|
|
|
|
|
|
|
def predict(self, **kwargs): |
|
|
|
def predict(self, *args, **kwargs): |
|
|
|
"""Inference model.""" |
|
|
|
varkw = self.parse_kwargs(self.estimator.predict, **kwargs) |
|
|
|
return self.estimator.predict(**varkw) |
|
|
|
return self.estimator.predict(*args, **varkw) |
|
|
|
|
|
|
|
def predict_proba(self, **kwargs): |
|
|
|
def predict_proba(self, *args, **kwargs): |
|
|
|
"""Compute probabilities of possible outcomes for samples in X.""" |
|
|
|
varkw = self.parse_kwargs(self.estimator.predict_proba, **kwargs) |
|
|
|
return self.estimator.predict_proba(**varkw) |
|
|
|
return self.estimator.predict_proba(*args, **varkw) |
|
|
|
|
|
|
|
def evaluate(self, **kwargs): |
|
|
|
def evaluate(self, *args, **kwargs): |
|
|
|
"""evaluate model.""" |
|
|
|
varkw = self.parse_kwargs(self.estimator.evaluate, **kwargs) |
|
|
|
return self.estimator.evaluate(**varkw) |
|
|
|
return self.estimator.evaluate(*args, **varkw) |
|
|
|
|
|
|
|
def save(self, model_url="", model_name=None): |
|
|
|
mname = model_name or self.model_name |
|
|
|
|