Browse Source

add lifelong learning introduction

Signed-off-by: Jie Pu <pujie2@huawei.com>
tags/v0.3.0
Jie Pu 4 years ago
parent
commit
4499342ffb
2 changed files with 6 additions and 4 deletions
  1. +3
    -2
      README.md
  2. +3
    -2
      README_zh.md

+ 3
- 2
README.md View File

@@ -6,7 +6,7 @@ English | [简体中文](./README_zh.md)

## What is Sedna?

Sedna is an edge-cloud synergy AI project incubated in KubeEdge SIG AI. Benefiting from the edge-cloud synergy capabilities provided by KubeEdge, Sedna can implement across edge-cloud collaborative training and collaborative inference capabilities, such as joint inference, incremental learning, and federated learning. Sedna supports popular AI frameworks, such as TensorFlow, Pytorch, PaddlePaddle, MindSpore.
Sedna is an edge-cloud synergy AI project incubated in KubeEdge SIG AI. Benefiting from the edge-cloud synergy capabilities provided by KubeEdge, Sedna can implement across edge-cloud collaborative training and collaborative inference capabilities, such as joint inference, incremental learning, federated learning, and lifelong learning. Sedna supports popular AI frameworks, such as TensorFlow, Pytorch, PaddlePaddle, MindSpore.

Sedna can simply enable edge-cloud synergy capabilities to existing training and inference scripts, bringing the benefits of reducing costs, improving model performance, and protecting data privacy.

@@ -20,8 +20,9 @@ Sedna has the following features:
* Provide edge-cloud synergy training and inference frameworks.
* Joint inference: under the condition of limited resources on the edge, difficult inference tasks are offloaded to the cloud to improve the overall performance, keeping the throughput.
* Incremental training: For small samples and non-iid data on the edge, models can be adaptively optimized on the cloud or edge. The more the models are used, the smarter they are.
* Incremental training: For small samples and non-iid data on the edge, models can be adaptively optimized over time on the cloud or edge.
* Federated learning: For those scenarios that the data being too large, or unwilling to migrate raw data to the cloud, or high privacy protection requirements, models are trained at the edge and parameters are aggregated on the cloud to resolve data silos effectively.
* Lifelong Learning: Confronted with the challenge of heterogeneous data distributions in complex scenarios and small samples on the edge, the edge-cloud synergy lifelong learning: 1) leverages the cloud knowledge base which empowers the scheme with memory ability, which helps to continuously learn and accumulate historical knowledge to overcome the catastrophic forgetting challenge. 2) is essentially the combination of another two learning schemes, i.e., multi-task learning and incremental learning, so that it can learn unseen tasks with shared knowledge among various scenarios over time.
* etc..
* Compatibility


+ 3
- 2
README_zh.md View File

@@ -5,7 +5,7 @@
[![LICENSE](https://img.shields.io/github/license/kubeedge/sedna.svg)](/LICENSE)

## 什么是Sedna?
Sedna是在KubeEdge SIG AI中孵化的一个边云协同AI项目。得益于KubeEdge提供的边云协同能力,Sedna可以实现跨边云的协同训练和协同推理能力,如联合推理、增量学习、联邦学习等。Sedna支持目前广泛使用的AI框架,如TensorFlow/Pytorch/PaddlePaddle/MindSpore等,现有AI类应用可以无缝迁移到Sedna, 快速实现边云协同的训练和推理,可在降低成本、提升模型性能、保护数据隐私等方面获得提升。
Sedna是在KubeEdge SIG AI中孵化的一个边云协同AI项目。得益于KubeEdge提供的边云协同能力,Sedna可以实现跨边云的协同训练和协同推理能力,如联合推理、增量学习、联邦学习、终身学习等。Sedna支持目前广泛使用的AI框架,如TensorFlow/Pytorch/PaddlePaddle/MindSpore等,现有AI类应用可以无缝迁移到Sedna, 快速实现边云协同的训练和推理,可在降低成本、提升模型性能、保护数据隐私等方面获得提升。

## 项目特性
Sedna具有如下特性:
@@ -13,8 +13,9 @@ Sedna具有如下特性:
* 提供基础的边云协同数据集管理、模型管理,方便开发者快速开发边云协同AI应用
* 提供边云协同训练和推理框架
* 联合推理: 针对边缘资源需求大,或边侧资源受限条件下,基于边云协同的能力,将推理任务卸载到云端,提升系统整体的推理性能
* 增量训练: 针对小样本和边缘数据异构的问题,模型可以在云端或边缘进行自适应优化,边用边学,越用越聪明
* 增量训练: 针对小样本和边缘数据异构的问题,模型可以在云端或边缘进行跨时间自适应优化
* 联邦学习: 针对数据大,原始数据不出边缘,隐私要求高等场景,模型在边缘训练,参数云上聚合,可有效解决数据孤岛的问题
* 终身学习:针对小样本和边缘数据异构的问题,1)通过云端知识库提供记忆功能,让边缘积累的样本知识能在持续更新同时被持久化,从而处理灾难性遗忘问题;2)结合增量训练和多任务训练,同时实现跨时间与跨情景的知识迁移,从而更好地处理未知任务。
* more
* 兼容性
* 兼容主流AI框架TensorFlow、Pytorch、PaddlePaddle、MindSpore等


Loading…
Cancel
Save