|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- # Copyright 2021 The KubeEdge Authors.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import json
-
- from sedna.datasources import CSVDataParse
- from sedna.common.config import Context, BaseConfig
- from sedna.core.lifelong_learning import LifelongLearning
-
- from interface import DATACONF, Estimator, feature_process
-
-
- def main():
- # load dataset.
- train_dataset_url = BaseConfig.train_dataset_url
- train_data = CSVDataParse(data_type="train", func=feature_process)
- train_data.parse(train_dataset_url, label=DATACONF["LABEL"])
- attribute = json.dumps({"attribute": DATACONF["ATTRIBUTES"]})
- early_stopping_rounds = int(
- Context.get_parameters("early_stopping_rounds", 100)
- )
- metric_name = Context.get_parameters("metric_name", "mlogloss")
-
- task_definition = {
- "method": "TaskDefinitionByDataAttr",
- "param": attribute
- }
-
- ll_job = LifelongLearning(
- estimator=Estimator,
- task_definition=task_definition,
- task_relationship_discovery=None,
- task_mining=None,
- task_remodeling=None,
- inference_integrate=None,
- unseen_task_detect=None
- )
- train_experiment = ll_job.train(
- train_data=train_data,
- metric_name=metric_name,
- early_stopping_rounds=early_stopping_rounds
- )
-
- return train_experiment
-
-
- if __name__ == '__main__':
- print(main())
|