- import logging
-
- import numpy as np
-
- import neptune.ml_model
- from neptune.ml_model import load_model
-
- LOG = logging.getLogger(__name__)
-
- if __name__ == '__main__':
- valid_data = neptune.load_test_dataset(data_format="txt", with_image=True)
-
- x_valid = np.array([tup[0] for tup in valid_data])
- y_valid = np.array([tup[1] for tup in valid_data])
-
- loaded_model = load_model()
- LOG.info(f"x_valid is {loaded_model.predict(x_valid)}")
|