|
- /*
- * $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $
- *
- * Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd.
- * Michael Clark <michael@metaparadigm.com>
- * Copyright (c) 2009 Hewlett-Packard Development Company, L.P.
- *
- * This library is free software; you can redistribute it and/or modify
- * it under the terms of the MIT license. See COPYING for details.
- *
- */
-
- #include <assert.h>
- #include <stdio.h>
- #include <string.h>
- #include <stdlib.h>
- #include <stdarg.h>
- #include <stddef.h>
- #include <limits.h>
-
- #ifdef HAVE_ENDIAN_H
- # include <endian.h> /* attempt to define endianness */
- #endif
-
- #include "random_seed.h"
- #include "linkhash.h"
-
- void lh_abort(const char *msg, ...)
- {
- va_list ap;
- va_start(ap, msg);
- vprintf(msg, ap);
- va_end(ap);
- exit(1);
- }
-
- unsigned long lh_ptr_hash(const void *k)
- {
- /* CAW: refactored to be 64bit nice */
- return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX);
- }
-
- int lh_ptr_equal(const void *k1, const void *k2)
- {
- return (k1 == k2);
- }
-
- /*
- * hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain.
- * http://burtleburtle.net/bob/c/lookup3.c
- * minor modifications to make functions static so no symbols are exported
- * minor mofifications to compile with -Werror
- */
-
- /*
- -------------------------------------------------------------------------------
- lookup3.c, by Bob Jenkins, May 2006, Public Domain.
-
- These are functions for producing 32-bit hashes for hash table lookup.
- hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
- are externally useful functions. Routines to test the hash are included
- if SELF_TEST is defined. You can use this free for any purpose. It's in
- the public domain. It has no warranty.
-
- You probably want to use hashlittle(). hashlittle() and hashbig()
- hash byte arrays. hashlittle() is is faster than hashbig() on
- little-endian machines. Intel and AMD are little-endian machines.
- On second thought, you probably want hashlittle2(), which is identical to
- hashlittle() except it returns two 32-bit hashes for the price of one.
- You could implement hashbig2() if you wanted but I haven't bothered here.
-
- If you want to find a hash of, say, exactly 7 integers, do
- a = i1; b = i2; c = i3;
- mix(a,b,c);
- a += i4; b += i5; c += i6;
- mix(a,b,c);
- a += i7;
- final(a,b,c);
- then use c as the hash value. If you have a variable length array of
- 4-byte integers to hash, use hashword(). If you have a byte array (like
- a character string), use hashlittle(). If you have several byte arrays, or
- a mix of things, see the comments above hashlittle().
-
- Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
- then mix those integers. This is fast (you can do a lot more thorough
- mixing with 12*3 instructions on 3 integers than you can with 3 instructions
- on 1 byte), but shoehorning those bytes into integers efficiently is messy.
- -------------------------------------------------------------------------------
- */
-
- /*
- * My best guess at if you are big-endian or little-endian. This may
- * need adjustment.
- */
- #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
- __BYTE_ORDER == __LITTLE_ENDIAN) || \
- (defined(i386) || defined(__i386__) || defined(__i486__) || \
- defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL))
- # define HASH_LITTLE_ENDIAN 1
- # define HASH_BIG_ENDIAN 0
- #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
- __BYTE_ORDER == __BIG_ENDIAN) || \
- (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
- # define HASH_LITTLE_ENDIAN 0
- # define HASH_BIG_ENDIAN 1
- #else
- # define HASH_LITTLE_ENDIAN 0
- # define HASH_BIG_ENDIAN 0
- #endif
-
- #define hashsize(n) ((uint32_t)1<<(n))
- #define hashmask(n) (hashsize(n)-1)
- #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
-
- /*
- -------------------------------------------------------------------------------
- mix -- mix 3 32-bit values reversibly.
-
- This is reversible, so any information in (a,b,c) before mix() is
- still in (a,b,c) after mix().
-
- If four pairs of (a,b,c) inputs are run through mix(), or through
- mix() in reverse, there are at least 32 bits of the output that
- are sometimes the same for one pair and different for another pair.
- This was tested for:
- * pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
- * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
- * the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
-
- Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
- satisfy this are
- 4 6 8 16 19 4
- 9 15 3 18 27 15
- 14 9 3 7 17 3
- Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
- for "differ" defined as + with a one-bit base and a two-bit delta. I
- used http://burtleburtle.net/bob/hash/avalanche.html to choose
- the operations, constants, and arrangements of the variables.
-
- This does not achieve avalanche. There are input bits of (a,b,c)
- that fail to affect some output bits of (a,b,c), especially of a. The
- most thoroughly mixed value is c, but it doesn't really even achieve
- avalanche in c.
-
- This allows some parallelism. Read-after-writes are good at doubling
- the number of bits affected, so the goal of mixing pulls in the opposite
- direction as the goal of parallelism. I did what I could. Rotates
- seem to cost as much as shifts on every machine I could lay my hands
- on, and rotates are much kinder to the top and bottom bits, so I used
- rotates.
- -------------------------------------------------------------------------------
- */
- #define mix(a,b,c) \
- { \
- a -= c; a ^= rot(c, 4); c += b; \
- b -= a; b ^= rot(a, 6); a += c; \
- c -= b; c ^= rot(b, 8); b += a; \
- a -= c; a ^= rot(c,16); c += b; \
- b -= a; b ^= rot(a,19); a += c; \
- c -= b; c ^= rot(b, 4); b += a; \
- }
-
- /*
- -------------------------------------------------------------------------------
- final -- final mixing of 3 32-bit values (a,b,c) into c
-
- Pairs of (a,b,c) values differing in only a few bits will usually
- produce values of c that look totally different. This was tested for
- * pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
- * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
- * the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
-
- These constants passed:
- 14 11 25 16 4 14 24
- 12 14 25 16 4 14 24
- and these came close:
- 4 8 15 26 3 22 24
- 10 8 15 26 3 22 24
- 11 8 15 26 3 22 24
- -------------------------------------------------------------------------------
- */
- #define final(a,b,c) \
- { \
- c ^= b; c -= rot(b,14); \
- a ^= c; a -= rot(c,11); \
- b ^= a; b -= rot(a,25); \
- c ^= b; c -= rot(b,16); \
- a ^= c; a -= rot(c,4); \
- b ^= a; b -= rot(a,14); \
- c ^= b; c -= rot(b,24); \
- }
-
-
- /*
- -------------------------------------------------------------------------------
- hashlittle() -- hash a variable-length key into a 32-bit value
- k : the key (the unaligned variable-length array of bytes)
- length : the length of the key, counting by bytes
- initval : can be any 4-byte value
- Returns a 32-bit value. Every bit of the key affects every bit of
- the return value. Two keys differing by one or two bits will have
- totally different hash values.
-
- The best hash table sizes are powers of 2. There is no need to do
- mod a prime (mod is sooo slow!). If you need less than 32 bits,
- use a bitmask. For example, if you need only 10 bits, do
- h = (h & hashmask(10));
- In which case, the hash table should have hashsize(10) elements.
-
- If you are hashing n strings (uint8_t **)k, do it like this:
- for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
-
- By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
- code any way you wish, private, educational, or commercial. It's free.
-
- Use for hash table lookup, or anything where one collision in 2^^32 is
- acceptable. Do NOT use for cryptographic purposes.
- -------------------------------------------------------------------------------
- */
-
- static uint32_t hashlittle( const void *key, size_t length, uint32_t initval)
- {
- uint32_t a,b,c; /* internal state */
- union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
-
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
-
- u.ptr = key;
- if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
- const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
-
- /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 12;
- k += 3;
- }
-
- /*----------------------------- handle the last (probably partial) block */
- /*
- * "k[2]&0xffffff" actually reads beyond the end of the string, but
- * then masks off the part it's not allowed to read. Because the
- * string is aligned, the masked-off tail is in the same word as the
- * rest of the string. Every machine with memory protection I've seen
- * does it on word boundaries, so is OK with this. But VALGRIND will
- * still catch it and complain. The masking trick does make the hash
- * noticably faster for short strings (like English words).
- */
- #ifndef VALGRIND
-
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
- case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
- case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
- case 6 : b+=k[1]&0xffff; a+=k[0]; break;
- case 5 : b+=k[1]&0xff; a+=k[0]; break;
- case 4 : a+=k[0]; break;
- case 3 : a+=k[0]&0xffffff; break;
- case 2 : a+=k[0]&0xffff; break;
- case 1 : a+=k[0]&0xff; break;
- case 0 : return c; /* zero length strings require no mixing */
- }
-
- #else /* make valgrind happy */
-
- const uint8_t *k8 = (const uint8_t *)k;
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
- case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
- case 9 : c+=k8[8]; /* fall through */
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
- case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
- case 5 : b+=k8[4]; /* fall through */
- case 4 : a+=k[0]; break;
- case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
- case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
- case 1 : a+=k8[0]; break;
- case 0 : return c;
- }
-
- #endif /* !valgrind */
-
- } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
- const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
- const uint8_t *k8;
-
- /*--------------- all but last block: aligned reads and different mixing */
- while (length > 12)
- {
- a += k[0] + (((uint32_t)k[1])<<16);
- b += k[2] + (((uint32_t)k[3])<<16);
- c += k[4] + (((uint32_t)k[5])<<16);
- mix(a,b,c);
- length -= 12;
- k += 6;
- }
-
- /*----------------------------- handle the last (probably partial) block */
- k8 = (const uint8_t *)k;
- switch(length)
- {
- case 12: c+=k[4]+(((uint32_t)k[5])<<16);
- b+=k[2]+(((uint32_t)k[3])<<16);
- a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
- case 10: c+=k[4];
- b+=k[2]+(((uint32_t)k[3])<<16);
- a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 9 : c+=k8[8]; /* fall through */
- case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
- a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
- case 6 : b+=k[2];
- a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 5 : b+=k8[4]; /* fall through */
- case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
- case 2 : a+=k[0];
- break;
- case 1 : a+=k8[0];
- break;
- case 0 : return c; /* zero length requires no mixing */
- }
-
- } else { /* need to read the key one byte at a time */
- const uint8_t *k = (const uint8_t *)key;
-
- /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- a += ((uint32_t)k[1])<<8;
- a += ((uint32_t)k[2])<<16;
- a += ((uint32_t)k[3])<<24;
- b += k[4];
- b += ((uint32_t)k[5])<<8;
- b += ((uint32_t)k[6])<<16;
- b += ((uint32_t)k[7])<<24;
- c += k[8];
- c += ((uint32_t)k[9])<<8;
- c += ((uint32_t)k[10])<<16;
- c += ((uint32_t)k[11])<<24;
- mix(a,b,c);
- length -= 12;
- k += 12;
- }
-
- /*-------------------------------- last block: affect all 32 bits of (c) */
- switch(length) /* all the case statements fall through */
- {
- case 12: c+=((uint32_t)k[11])<<24; // fallthrough
- case 11: c+=((uint32_t)k[10])<<16; // fallthrough
- case 10: c+=((uint32_t)k[9])<<8; // fallthrough
- case 9 : c+=k[8]; // fallthrough
- case 8 : b+=((uint32_t)k[7])<<24; // fallthrough
- case 7 : b+=((uint32_t)k[6])<<16; // fallthrough
- case 6 : b+=((uint32_t)k[5])<<8; // fallthrough
- case 5 : b+=k[4]; // fallthrough
- case 4 : a+=((uint32_t)k[3])<<24; // fallthrough
- case 3 : a+=((uint32_t)k[2])<<16; // fallthrough
- case 2 : a+=((uint32_t)k[1])<<8; // fallthrough
- case 1 : a+=k[0];
- break;
- case 0 : return c;
- }
- }
-
- final(a,b,c);
- return c;
- }
-
- unsigned long lh_char_hash(const void *k)
- {
- static volatile int random_seed = -1;
-
- if (random_seed == -1) {
- int seed;
- /* we can't use -1 as it is the unitialized sentinel */
- while ((seed = json_c_get_random_seed()) == -1);
- #if defined __GNUC__
- __sync_val_compare_and_swap(&random_seed, -1, seed);
- #elif defined _MSC_VER
- InterlockedCompareExchange(&random_seed, seed, -1);
- #else
- #warning "racy random seed initializtion if used by multiple threads"
- random_seed = seed; /* potentially racy */
- #endif
- }
-
- return hashlittle((const char*)k, strlen((const char*)k), random_seed);
- }
-
- int lh_char_equal(const void *k1, const void *k2)
- {
- return (strcmp((const char*)k1, (const char*)k2) == 0);
- }
-
- struct lh_table* lh_table_new(int size, const char *name,
- lh_entry_free_fn *free_fn,
- lh_hash_fn *hash_fn,
- lh_equal_fn *equal_fn)
- {
- int i;
- struct lh_table *t;
-
- /* Allocate space for elements to avoid divisions by zero. */
- assert(size > 0);
- t = (struct lh_table*)calloc(1, sizeof(struct lh_table));
- if(!t) lh_abort("lh_table_new: calloc failed\n");
- t->count = 0;
- t->size = size;
- t->name = name;
- t->table = (struct lh_entry*)calloc(size, sizeof(struct lh_entry));
- if(!t->table) lh_abort("lh_table_new: calloc failed\n");
- t->free_fn = free_fn;
- t->hash_fn = hash_fn;
- t->equal_fn = equal_fn;
- for(i = 0; i < size; i++) t->table[i].k = LH_EMPTY;
- return t;
- }
-
- struct lh_table* lh_kchar_table_new(int size, const char *name,
- lh_entry_free_fn *free_fn)
- {
- return lh_table_new(size, name, free_fn, lh_char_hash, lh_char_equal);
- }
-
- struct lh_table* lh_kptr_table_new(int size, const char *name,
- lh_entry_free_fn *free_fn)
- {
- return lh_table_new(size, name, free_fn, lh_ptr_hash, lh_ptr_equal);
- }
-
- void lh_table_resize(struct lh_table *t, int new_size)
- {
- struct lh_table *new_t;
- struct lh_entry *ent;
-
- new_t = lh_table_new(new_size, t->name, NULL, t->hash_fn, t->equal_fn);
- ent = t->head;
- while(ent) {
- lh_table_insert(new_t, ent->k, ent->v);
- ent = ent->next;
- }
- free(t->table);
- t->table = new_t->table;
- t->size = new_size;
- t->head = new_t->head;
- t->tail = new_t->tail;
- t->resizes++;
- free(new_t);
- }
-
- void lh_table_free(struct lh_table *t)
- {
- struct lh_entry *c;
- for(c = t->head; c != NULL; c = c->next) {
- if(t->free_fn) {
- t->free_fn(c);
- }
- }
- free(t->table);
- free(t);
- }
-
-
- int lh_table_insert(struct lh_table *t, void *k, const void *v)
- {
- unsigned long h, n;
-
- t->inserts++;
- if (t->count >= t->size * LH_LOAD_FACTOR) {
- /* Avoid signed integer overflow with large tables. */
- int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2);
- if (t->size == INT_MAX)
- return -1;
-
- lh_table_resize(t, new_size);
- }
-
- h = t->hash_fn(k);
- n = h % t->size;
-
- while( 1 ) {
- if(t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED) break;
- t->collisions++;
- if ((int)++n == t->size) n = 0;
- }
-
- t->table[n].k = k;
- t->table[n].v = v;
- t->count++;
-
- if(t->head == NULL) {
- t->head = t->tail = &t->table[n];
- t->table[n].next = t->table[n].prev = NULL;
- } else {
- t->tail->next = &t->table[n];
- t->table[n].prev = t->tail;
- t->table[n].next = NULL;
- t->tail = &t->table[n];
- }
-
- return 0;
- }
-
-
- struct lh_entry* lh_table_lookup_entry(struct lh_table *t, const void *k)
- {
- unsigned long h = t->hash_fn(k);
- unsigned long n = h % t->size;
- int count = 0;
-
- t->lookups++;
- while( count < t->size ) {
- if(t->table[n].k == LH_EMPTY) return NULL;
- if(t->table[n].k != LH_FREED &&
- t->equal_fn(t->table[n].k, k)) return &t->table[n];
- if ((int)++n == t->size) n = 0;
- count++;
- }
- return NULL;
- }
-
-
- const void* lh_table_lookup(struct lh_table *t, const void *k)
- {
- void *result;
- lh_table_lookup_ex(t, k, &result);
- return result;
- }
-
- json_bool lh_table_lookup_ex(struct lh_table* t, const void* k, void **v)
- {
- struct lh_entry *e = lh_table_lookup_entry(t, k);
- if (e != NULL) {
- if (v != NULL) *v = (void *)e->v;
- return TRUE; /* key found */
- }
- if (v != NULL) *v = NULL;
- return FALSE; /* key not found */
- }
-
- int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e)
- {
- ptrdiff_t n = (ptrdiff_t)(e - t->table); /* CAW: fixed to be 64bit nice, still need the crazy negative case... */
-
- /* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */
- if(n < 0) { return -2; }
-
- if(t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED) return -1;
- t->count--;
- if(t->free_fn) t->free_fn(e);
- t->table[n].v = NULL;
- t->table[n].k = LH_FREED;
- if(t->tail == &t->table[n] && t->head == &t->table[n]) {
- t->head = t->tail = NULL;
- } else if (t->head == &t->table[n]) {
- t->head->next->prev = NULL;
- t->head = t->head->next;
- } else if (t->tail == &t->table[n]) {
- t->tail->prev->next = NULL;
- t->tail = t->tail->prev;
- } else {
- t->table[n].prev->next = t->table[n].next;
- t->table[n].next->prev = t->table[n].prev;
- }
- t->table[n].next = t->table[n].prev = NULL;
- return 0;
- }
-
-
- int lh_table_delete(struct lh_table *t, const void *k)
- {
- struct lh_entry *e = lh_table_lookup_entry(t, k);
- if(!e) return -1;
- return lh_table_delete_entry(t, e);
- }
-
- int lh_table_length(struct lh_table *t)
- {
- return t->count;
- }
|