|
- # Copyright 2022 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import matplotlib.image as mp
- from mindspore import context, Tensor
- import mindspore
- from mindspore.dataset.vision.py_transforms import ToTensor
- import mindspore.dataset.vision.py_transforms as P
- from mindspore.dataset.vision.py_transforms import ToPIL as ToPILImage
- from FaceRecognition.eval import get_net
- import adversarial_attack
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
-
-
- if __name__ == '__main__':
- """
- The input image, target image and adversarial image are tested using the FaceRecognition model.
- """
-
- image = adversarial_attack.load_data('photos/adv_input/')
- inputs = adversarial_attack.load_data('photos/input/')
- targets = adversarial_attack.load_data('photos/target/')
-
- tensorize = ToTensor()
- normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- expand_dims = mindspore.ops.ExpandDims()
- MEAN = Tensor([0.485, 0.456, 0.406])
- STD = Tensor([0.229, 0.224, 0.225])
-
- resnet = get_net()
-
-
- adv = Tensor(normalize(tensorize(image[0])))
- input_tensor = Tensor(normalize(tensorize(inputs[0])))
- target_tensor = Tensor(normalize(tensorize(targets[0])))
-
- adversarial_emb = resnet(expand_dims(adv, 0))
- input_emb = resnet(expand_dims(input_tensor, 0))
- target_emb = resnet(expand_dims(target_tensor, 0))
-
- adversarial = np.argmax(adversarial_emb.asnumpy())
- target = np.argmax(target_emb.asnumpy())
- input = np.argmax(input_emb.asnumpy())
-
- print("input:", input)
- print("input_confidence:", input_emb.asnumpy()[0][input])
- print("================================")
- print("adversarial:", adversarial)
- print("adversarial_confidence:", adversarial_emb.asnumpy()[0][adversarial])
- print("Confidence changes for input:", adversarial_emb.asnumpy()[0][input])
- print("================================")
-
- print("input:%d, target:%d, adversarial:%d" % (input, target, adversarial))
|