|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Image transform
- """
- import numpy as np
- from PIL import Image, ImageEnhance, ImageFilter
- import random
-
- from mindarmour.utils._check_param import check_numpy_param
-
- class ImageTransform:
- """
- The abstract base class for all image transform classes.
- """
-
- def __init__(self):
- pass
-
- def random_param(self):
- pass
-
- def transform(self):
- pass
-
-
- class Contrast(ImageTransform):
- """
- Contrast of an image.
-
- Args:
- image (numpy.ndarray): Original image to be transformed.
- mode (str): Mode used in PIL, here mode must be in ['L', 'RGB'],
- 'L' means grey image.
- """
-
- def __init__(self, image, mode):
- super(Contrast, self).__init__()
- self.image = check_numpy_param('image', image)
- self.mode = mode
-
- def random_param(self):
- """ Random generate parameters. """
- self.factor = random.uniform(-5, 5)
-
- def transform(self):
- img = Image.fromarray(np.uint8(self.image*255), self.mode)
- img_contrast = ImageEnhance.Contrast(img)
- trans_image = img_contrast.enhance(self.factor)
- trans_image = np.array(trans_image)/255
- return trans_image
-
-
- class Brightness(ImageTransform):
- """
- Brightness of an image.
-
- Args:
- image (numpy.ndarray): Original image to be transformed.
- mode (str): Mode used in PIL, here mode must be in ['L', 'RGB'],
- 'L' means grey image.
- """
-
- def __init__(self, image, mode):
- super(Brightness, self).__init__()
- self.image = check_numpy_param('image', image)
- self.mode = mode
-
- def random_param(self):
- """ Random generate parameters. """
- self.factor = random.uniform(0, 5)
-
- def transform(self):
- img = Image.fromarray(np.uint8(self.image*255), self.mode)
- img_contrast = ImageEnhance.Brightness(img)
- trans_image = img_contrast.enhance(self.factor)
- trans_image = np.array(trans_image)/255
- return trans_image
-
-
- class Blur(ImageTransform):
- """
- GaussianBlur of an image.
-
- Args:
- image (numpy.ndarray): Original image to be transformed.
- mode (str): Mode used in PIL, here mode must be in ['L', 'RGB'],
- 'L' means grey image.
- """
-
- def __init__(self, image, mode):
- super(Blur, self).__init__()
- self.image = check_numpy_param('image', image)
- self.mode = mode
-
- def random_param(self):
- """ Random generate parameters. """
- self.radius = random.uniform(-1.5, 1.5)
-
- def transform(self):
- """ Transform the image. """
- img = Image.fromarray(np.uint8(self.image*255), self.mode)
- trans_image = img.filter(ImageFilter.GaussianBlur(radius=self.radius))
- trans_image = np.array(trans_image)/255
- return trans_image
-
-
- class Noise(ImageTransform):
- """
- Add noise of an image.
-
- Args:
- image (numpy.ndarray): Original image to be transformed.
- mode (str): Mode used in PIL, here mode must be in ['L', 'RGB'],
- 'L' means grey image.
- """
-
- def __init__(self, image, mode):
- super(Noise, self).__init__()
- self.image = check_numpy_param('image', image)
- self.mode = mode
-
- def random_param(self):
- """ random generate parameters """
- self.factor = random.uniform(0.7, 1)
-
- def transform(self):
- """ Random generate parameters. """
- noise = np.random.uniform(low=-1, high=1, size=self.image.shape)
- trans_image = np.copy(self.image)
- trans_image[noise < -self.factor] = 0
- trans_image[noise > self.factor] = 1
- trans_image = np.array(trans_image)
- return trans_image
-
-
- class Translate(ImageTransform):
- """
- Translate an image.
-
- Args:
- image (numpy.ndarray): Original image to be transformed.
- mode (str): Mode used in PIL, here mode must be in ['L', 'RGB'],
- 'L' means grey image.
- """
-
- def __init__(self, image, mode):
- super(Translate, self).__init__()
- self.image = check_numpy_param('image', image)
- self.mode = mode
-
- def random_param(self):
- """ Random generate parameters. """
- image_shape = np.shape(self.image)
- self.x_bias = random.uniform(-image_shape[0]/3, image_shape[0]/3)
- self.y_bias = random.uniform(-image_shape[1]/3, image_shape[1]/3)
-
- def transform(self):
- """ Transform the image. """
- img = Image.fromarray(np.uint8(self.image*255), self.mode)
- trans_image = img.transform(img.size, Image.AFFINE,
- (1, 0, self.x_bias, 0, 1, self.y_bias))
- trans_image = np.array(trans_image)/255
- return trans_image
-
-
- class Scale(ImageTransform):
- """
- Scale an image.
-
- Args:
- image(numpy.ndarray): Original image to be transformed.
- mode(str): Mode used in PIL, here mode must be in ['L', 'RGB'],
- 'L' means grey image.
- """
-
- def __init__(self, image, mode):
- super(Scale, self).__init__()
- self.image = check_numpy_param('image', image)
- self.mode = mode
-
- def random_param(self):
- """ Random generate parameters. """
- self.factor_x = random.uniform(0.7, 2)
- self.factor_y = random.uniform(0.7, 2)
-
- def transform(self):
- """ Transform the image. """
- img = Image.fromarray(np.uint8(self.image*255), self.mode)
- trans_image = img.transform(img.size, Image.AFFINE,
- (self.factor_x, 0, 0, 0, self.factor_y, 0))
- trans_image = np.array(trans_image)/255
- return trans_image
-
-
- class Shear(ImageTransform):
- """
- Shear an image.
-
- Args:
- image (numpy.ndarray): Original image to be transformed.
- mode (str): Mode used in PIL, here mode must be in ['L', 'RGB'],
- 'L' means grey image.
- """
-
- def __init__(self, image, mode):
- super(Shear, self).__init__()
- self.image = check_numpy_param('image', image)
- self.mode = mode
-
- def random_param(self):
- """ Random generate parameters. """
- self.factor = random.uniform(0, 1)
-
- def transform(self):
- """ Transform the image. """
- img = Image.fromarray(np.uint8(self.image*255), self.mode)
- if np.random.random() > 0.5:
- level = -self.factor
- else:
- level = self.factor
- if np.random.random() > 0.5:
- trans_image = img.transform(img.size, Image.AFFINE,
- (1, level, 0, 0, 1, 0))
- else:
- trans_image = img.transform(img.size, Image.AFFINE,
- (1, 0, 0, level, 1, 0))
- trans_image = np.array(trans_image, dtype=np.float)/255
- return trans_image
-
-
- class Rotate(ImageTransform):
- """
- Rotate an image.
-
- Args:
- image (numpy.ndarray): Original image to be transformed.
- mode (str): Mode used in PIL, here mode must be in ['L', 'RGB'],
- 'L' means grey image.
- """
-
- def __init__(self, image, mode):
- super(Rotate, self).__init__()
- self.image = check_numpy_param('image', image)
- self.mode = mode
-
- def random_param(self):
- """ Random generate parameters. """
- self.angle = random.uniform(0, 360)
-
- def transform(self):
- """ Transform the image. """
- img = Image.fromarray(np.uint8(self.image*255), self.mode)
- trans_image = img.rotate(self.angle)
- trans_image = np.array(trans_image)/255
- return trans_image
|