|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Membership Inference
- """
-
- from multiprocessing import cpu_count
- import numpy as np
-
- import mindspore as ms
- from mindspore.train import Model
- from mindspore.dataset.engine import Dataset
- from mindspore import Tensor
- from mindarmour.utils.logger import LogUtil
- from .attacker import get_attack_model
- from ._check_config import check_config_params
-
- LOGGER = LogUtil.get_instance()
- TAG = "MembershipInference"
-
-
- def _eval_info(pred, truth, option):
- """
- Calculate the performance according to pred and truth.
-
- Args:
- pred (numpy.ndarray): Predictions for each sample.
- truth (numpy.ndarray): Ground truth for each sample.
- option(str): Type of evaluation indicators; Possible
- values are 'precision', 'accuracy' and 'recall'.
-
- Returns:
- float32, Calculated evaluation results.
-
- Raises:
- ValueError, size of parameter pred or truth is 0.
- ValueError, value of parameter option must be in ["precision", "accuracy", "recall"].
- """
- if pred.size == 0 or truth.size == 0:
- msg = "Size of pred or truth is 0."
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
-
- if option == "accuracy":
- count = np.sum(pred == truth)
- return count / len(pred)
- if option == "precision":
- count = np.sum(pred & truth)
- if np.sum(pred) == 0:
- return -1
- return count / np.sum(pred)
- if option == "recall":
- count = np.sum(pred & truth)
- if np.sum(truth) == 0:
- return -1
- return count / np.sum(truth)
-
- msg = "The metric value {} is undefined.".format(option)
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
-
-
- def _softmax_cross_entropy(logits, labels):
- """
- Calculate the SoftmaxCrossEntropy result between logits and labels.
-
- Args:
- logits (numpy.ndarray): Numpy array of shape(N, C).
- labels (numpy.ndarray): Numpy array of shape(N, )
-
- Returns:
- numpy.ndarray: Numpy array of shape(N, ), containing loss value for each vector in logits.
- """
- labels = np.eye(logits.shape[1])[labels].astype(np.int32)
- logits = np.exp(logits) / np.sum(np.exp(logits), axis=1, keepdims=True)
- loss = -1*np.sum(labels*np.log(logits), axis=1)
-
- nan_index = np.isnan(loss)
- if np.any(nan_index):
- loss[nan_index] = 0
- return loss
-
-
- class MembershipInference:
- """
- Evaluation proposed by Shokri, Stronati, Song and Shmatikov is a grey-box attack.
- The attack requires obtain loss or logits results of training samples.
-
- References: `Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov.
- Membership Inference Attacks against Machine Learning Models. 2017.
- <https://arxiv.org/abs/1610.05820v2>`_
-
- Args:
- model (Model): Target model.
- n_jobs (int): Number of jobs run in parallel. -1 means using all processors,
- otherwise the value of n_jobs must be a positive integer.
-
- Examples:
- >>> train_1, train_2 are non-overlapping datasets from training dataset of target model.
- >>> test_1, test_2 are non-overlapping datasets from test dataset of target model.
- >>> We use train_1, test_1 to train attack model, and use train_2, test_2 to evaluate attack model.
- >>> model = Model(network=net, loss_fn=loss, optimizer=opt, metrics={'acc', 'loss'})
- >>> inference_model = MembershipInference(model, n_jobs=-1)
- >>> config = [{"method": "KNN", "params": {"n_neighbors": [3, 5, 7]}}]
- >>> inference_model.train(train_1, test_1, config)
- >>> metrics = ["precision", "recall", "accuracy"]
- >>> result = inference_model.eval(train_2, test_2, metrics)
-
- Raises:
- TypeError: If type of model is not mindspore.train.Model.
- TypeError: If type of n_jobs is not int.
- ValueError: The value of n_jobs is neither -1 nor a positive integer.
- """
-
- def __init__(self, model, n_jobs=-1):
- if not isinstance(model, Model):
- msg = "Type of parameter 'model' must be Model, but got {}.".format(type(model))
- LOGGER.error(TAG, msg)
- raise TypeError(msg)
- if not isinstance(n_jobs, int):
- msg = "Type of parameter 'n_jobs' must be int, but got {}".format(type(n_jobs))
- LOGGER.error(TAG, msg)
- raise TypeError(msg)
- if not (n_jobs == -1 or n_jobs > 0):
- msg = "Value of n_jobs must be either -1 or positive integer, but got {}.".format(n_jobs)
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
-
- self.model = model
- self.n_jobs = min(n_jobs, cpu_count())
- self.method_list = ["knn", "lr", "mlp", "rf"]
- self.attack_list = []
-
- def train(self, dataset_train, dataset_test, attack_config):
- """
- Depending on the configuration, use the incoming data set to train the attack model.
- Save the attack model to self.attack_list.
-
- Args:
- dataset_train (mindspore.dataset): The training dataset for the target model.
- dataset_test (mindspore.dataset): The test set for the target model.
- attack_config (list): Parameter setting for the attack model. The format is
- [{"method": "knn", "params": {"n_neighbors": [3, 5, 7]}},
- {"method": "lr", "params": {"C": np.logspace(-4, 2, 10)}}].
- The support methods list is in self.method_list, and the params of each method
- must within the range of changeable parameters. Tips of params implement
- can be found in
- "https://scikit-learn.org/0.16/modules/generated/sklearn.grid_search.GridSearchCV.html".
-
- Raises:
- KeyError: If each config in attack_config doesn't have keys {"method", "params"}
- ValueError: If the method(case insensitive) in attack_config is not in ["lr", "knn", "rf", "mlp"].
- """
- if not isinstance(dataset_train, Dataset):
- msg = "Type of parameter 'dataset_train' must be Dataset, but got {}".format(type(dataset_train))
- LOGGER.error(TAG, msg)
- raise TypeError(msg)
-
- if not isinstance(dataset_test, Dataset):
- msg = "Type of parameter 'test_train' must be Dataset, but got {}".format(type(dataset_train))
- LOGGER.error(TAG, msg)
- raise TypeError(msg)
-
- if not isinstance(attack_config, list):
- msg = "Type of parameter 'attack_config' must be list, but got {}.".format(type(attack_config))
- LOGGER.error(TAG, msg)
- raise TypeError(msg)
-
- check_config_params(attack_config) # Verify attack config.
-
- features, labels = self._transform(dataset_train, dataset_test)
-
- for config in attack_config:
- self.attack_list.append(get_attack_model(features, labels, config, n_jobs=self.n_jobs))
-
-
- def eval(self, dataset_train, dataset_test, metrics):
- """
- Evaluate the different privacy of the target model.
- Evaluation indicators shall be specified by metrics.
-
- Args:
- dataset_train (mindspore.dataset): The training dataset for the target model.
- dataset_test (mindspore.dataset): The test dataset for the target model.
- metrics (Union[list, tuple]): Evaluation indicators. The value of metrics
- must be in ["precision", "accuracy", "recall"]. Default: ["precision"].
-
- Returns:
- list, Each element contains an evaluation indicator for the attack model.
- """
- if not isinstance(dataset_train, Dataset):
- msg = "Type of parameter 'dataset_train' must be Dataset, but got {}".format(type(dataset_train))
- LOGGER.error(TAG, msg)
- raise TypeError(msg)
-
- if not isinstance(dataset_test, Dataset):
- msg = "Type of parameter 'test_train' must be Dataset, but got {}".format(type(dataset_train))
- LOGGER.error(TAG, msg)
- raise TypeError(msg)
-
- if not isinstance(metrics, (list, tuple)):
- msg = "Type of parameter 'config' must be Union[list, tuple], but got {}.".format(type(metrics))
- LOGGER.error(TAG, msg)
- raise TypeError(msg)
-
- metrics = set(metrics)
- metrics_list = {"precision", "accuracy", "recall"}
- if not metrics <= metrics_list:
- msg = "Element in 'metrics' must be in {}, but got {}.".format(metrics_list, metrics)
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
-
- result = []
- features, labels = self._transform(dataset_train, dataset_test)
- for attacker in self.attack_list:
- pred = attacker.predict(features)
- item = {}
- for option in metrics:
- item[option] = _eval_info(pred, labels, option)
- result.append(item)
- return result
-
- def _transform(self, dataset_train, dataset_test):
- """
- Generate corresponding loss_logits feature and new label, and return after shuffle.
-
- Args:
- dataset_train: The training set for the target model.
- dataset_test: The test set for the target model.
-
- Returns:
- - numpy.ndarray, Loss_logits features for each sample. Shape is (N, C).
- N is the number of sample. C = 1 + dim(logits).
- - numpy.ndarray, Labels for each sample, Shape is (N,).
- """
- features_train, labels_train = self._generate(dataset_train, 1)
- features_test, labels_test = self._generate(dataset_test, 0)
- features = np.vstack((features_train, features_test))
- labels = np.hstack((labels_train, labels_test))
- shuffle_index = np.array(range(len(labels)))
- np.random.shuffle(shuffle_index)
- features = features[shuffle_index]
- labels = labels[shuffle_index]
-
- return features, labels
-
- def _generate(self, dataset_x, label):
- """
- Return a loss_logits features and labels for training attack model.
-
- Args:
- dataset_x (mindspore.dataset): The dataset to be generate.
- label (int32): Whether dataset_x belongs to the target model.
-
- Returns:
- - numpy.ndarray, Loss_logits features for each sample. Shape is (N, C).
- N is the number of sample. C = 1 + dim(logits).
- - numpy.ndarray, Labels for each sample, Shape is (N,).
- """
- loss_logits = np.array([])
- for batch in dataset_x.create_dict_iterator():
- batch_data = Tensor(batch['image'], ms.float32)
- batch_labels = batch['label'].astype(np.int32)
- batch_logits = self.model.predict(batch_data).asnumpy()
- batch_loss = _softmax_cross_entropy(batch_logits, batch_labels)
-
- batch_feature = np.hstack((batch_loss.reshape(-1, 1), batch_logits))
- if loss_logits.size == 0:
- loss_logits = batch_feature
- else:
- loss_logits = np.vstack((loss_logits, batch_feature))
-
- if label == 1:
- labels = np.ones(len(loss_logits), np.int32)
- elif label == 0:
- labels = np.zeros(len(loss_logits), np.int32)
- else:
- msg = "The value of label must be 0 or 1, but got {}.".format(label)
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- return loss_logits, labels
|