|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ Monitor module of differential privacy training. """
- import math
- import numpy as np
- from scipy import special
-
- from mindspore.train.callback import Callback
-
- from mindarmour.utils.logger import LogUtil
- from mindarmour.utils._check_param import check_int_positive, \
- check_value_positive, check_param_in_range, check_param_type
-
- LOGGER = LogUtil.get_instance()
- TAG = 'DP monitor'
-
-
- class PrivacyMonitorFactory:
- """
- Factory class of DP training's privacy monitor.
- """
-
- def __init__(self):
- pass
-
- @staticmethod
- def create(policy, *args, **kwargs):
- """
- Create a privacy monitor class.
-
- Args:
- policy (str): Monitor policy, 'rdp' is supported by now. RDP means R'enyi differential privacy,
- which computed based on R'enyi divergence.
- args (Union[int, float, numpy.ndarray, list, str]): Parameters
- used for creating a privacy monitor.
- kwargs (Union[int, float, numpy.ndarray, list, str]): Keyword
- parameters used for creating a privacy monitor.
-
- Returns:
- Callback, a privacy monitor.
-
- Examples:
- >>> rdp = PrivacyMonitorFactory.create(policy='rdp',
- >>> num_samples=60000, batch_size=32)
- """
- if policy == 'rdp':
- return RDPMonitor(*args, **kwargs)
- raise ValueError("Only RDP-policy is supported by now")
-
-
- class RDPMonitor(Callback):
- """
- Compute the privacy budget of DP training based on Renyi differential
- privacy theory.
-
- Reference: `Rényi Differential Privacy of the Sampled Gaussian Mechanism
- <https://arxiv.org/abs/1908.10530>`_
-
- Args:
- num_samples (int): The total number of samples in training data sets.
- batch_size (int): The number of samples in a batch while training.
- initial_noise_multiplier (Union[float, int]): The initial
- multiplier of the noise added to training parameters' gradients. Default: 1.5.
- max_eps (Union[float, int, None]): The maximum acceptable epsilon
- budget for DP training. Default: 10.0.
- target_delta (Union[float, int, None]): Target delta budget for DP
- training. Default: 1e-3.
- max_delta (Union[float, int, None]): The maximum acceptable delta
- budget for DP training. Max_delta must be less than 1 and
- suggested to be less than 1e-3, otherwise overflow would be
- encountered. Default: None.
- target_eps (Union[float, int, None]): Target epsilon budget for DP
- training. Default: None.
- orders (Union[None, list[int, float]]): Finite orders used for
- computing rdp, which must be greater than 1.
- noise_decay_mode (str): Decay mode of adding noise while training,
- which can be 'no_decay', 'Time' or 'Step'. Default: 'Time'.
- noise_decay_rate (Union[float, None]): Decay rate of noise while
- training. Default: 6e-4.
- per_print_times (int): The interval steps of computing and printing
- the privacy budget. Default: 50.
-
- Examples:
- >>> rdp = PrivacyMonitorFactory.create(policy='rdp',
- >>> num_samples=60000, batch_size=256)
- >>> network = Net()
- >>> net_loss = nn.SoftmaxCrossEntropyWithLogits()
- >>> net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
- >>> model = Model(network, net_loss, net_opt)
- >>> model.train(epochs, ds, callbacks=[rdp], dataset_sink_mode=False)
- """
-
- def __init__(self, num_samples, batch_size, initial_noise_multiplier=1.5,
- max_eps=10.0, target_delta=1e-3, max_delta=None,
- target_eps=None, orders=None, noise_decay_mode='Time',
- noise_decay_rate=6e-4, per_print_times=50):
- super(RDPMonitor, self).__init__()
- check_int_positive('num_samples', num_samples)
- check_int_positive('batch_size', batch_size)
- if batch_size >= num_samples:
- msg = 'Batch_size must be less than num_samples.'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- check_value_positive('initial_noise_multiplier',
- initial_noise_multiplier)
- if max_eps is not None:
- check_value_positive('max_eps', max_eps)
- if target_delta is not None:
- check_value_positive('target_delta', target_delta)
- if max_delta is not None:
- check_value_positive('max_delta', max_delta)
- if max_delta >= 1:
- msg = 'max_delta must be less than 1.'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- if target_eps is not None:
- check_value_positive('target_eps', target_eps)
- if orders is not None:
- for item in orders:
- check_value_positive('order', item)
- if item <= 1:
- msg = 'orders must be greater than 1'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- if noise_decay_mode not in ('no_decay', 'Step', 'Time'):
- msg = "Noise decay mode must be in ('no_decay', 'Step', 'Time')"
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- if noise_decay_rate is not None:
- noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
- check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
- check_int_positive('per_print_times', per_print_times)
-
- self._total_echo_privacy = None
- self._num_samples = num_samples
- self._batch_size = batch_size
- self._initial_noise_multiplier = initial_noise_multiplier
- self._max_eps = max_eps
- self._target_delta = target_delta
- self._max_delta = max_delta
- self._target_eps = target_eps
- self._orders = orders
- self._noise_decay_mode = noise_decay_mode
- self._noise_decay_rate = noise_decay_rate
- self._rdp = 0
- self._per_print_times = per_print_times
-
- def max_epoch_suggest(self):
- """
- Estimate the maximum training epochs to satisfy the predefined
- privacy budget.
-
- Returns:
- int, the recommended maximum training epochs.
-
- Examples:
- >>> rdp = PrivacyMonitorFactory.create(policy='rdp',
- >>> num_samples=60000, batch_size=32)
- >>> suggest_epoch = rdp.max_epoch_suggest()
- """
- epoch = 1
- while epoch < 10000:
- steps = self._num_samples // self._batch_size
- eps, delta = self._compute_privacy_steps(
- list(np.arange((epoch - 1) * steps, epoch * steps + 1)))
- if self._max_eps is not None:
- if eps <= self._max_eps:
- epoch += 1
- else:
- break
- if self._max_delta is not None:
- if delta <= self._max_delta:
- epoch += 1
- else:
- break
- self._rdp = 0
- return epoch
-
- def step_end(self, run_context):
- """
- Compute privacy budget after each training step.
-
- Args:
- run_context (RunContext): Include some information of the model.
- """
- cb_params = run_context.original_args()
- cur_step = cb_params.cur_step_num
- cur_step_in_epoch = (cb_params.cur_step_num - 1) % \
- cb_params.batch_num + 1
-
- if cb_params.cur_step_num % self._per_print_times == 0:
- steps = np.arange(cur_step - self._per_print_times, cur_step + 1)
- eps, delta = self._compute_privacy_steps(list(steps))
- if np.isnan(eps) or np.isinf(eps) or np.isnan(delta) or np.isinf(
- delta):
- msg = 'epoch: {} step: {}, invalid eps, terminating ' \
- 'training.'.format(
- cb_params.cur_epoch_num, cur_step_in_epoch)
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- if np.isnan(delta) or np.isinf(delta):
- msg = 'epoch: {} step: {}, invalid delta, terminating ' \
- 'training.'.format(
- cb_params.cur_epoch_num, cur_step_in_epoch)
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- print("epoch: %s step: %s, delta is %s, eps is %s" % (
- cb_params.cur_epoch_num, cur_step_in_epoch, delta, eps))
-
- def _compute_privacy_steps(self, steps):
- """
- Compute privacy budget corresponding to steps.
-
- Args:
- steps (list): Training steps.
-
- Returns:
- float, privacy budget.
- """
- if self._target_eps is None and self._target_delta is None:
- msg = 'target eps and target delta cannot both be None'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
-
- if self._target_eps is not None and self._target_delta is not None:
- msg = 'One of target eps and target delta must be None'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
-
- if self._orders is None:
- self._orders = (
- [1.005, 1.01, 1.02, 1.08, 1.2, 2, 5, 10, 20, 40, 80])
-
- sampling_rate = self._batch_size / self._num_samples
- noise_step = self._initial_noise_multiplier
-
- if self._noise_decay_mode == 'no_decay':
- self._rdp += self._compute_rdp(sampling_rate, noise_step) * len(
- steps)
- else:
- if self._noise_decay_rate is None:
- msg = 'noise_decay_rate in decay-mode cannot be None'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
-
- if self._noise_decay_mode == 'Time':
- noise_step = [self._initial_noise_multiplier / (
- 1 + self._noise_decay_rate * step) for step in steps]
-
- elif self._noise_decay_mode == 'Step':
- noise_step = [self._initial_noise_multiplier * (
- 1 - self._noise_decay_rate) ** step for step in steps]
- self._rdp += sum(
- [self._compute_rdp(sampling_rate, noise) for noise in
- noise_step])
- eps, delta = self._compute_privacy_budget(self._rdp)
-
- return eps, delta
-
- def _compute_rdp(self, q, noise):
- """
- Compute rdp according to sampling rate, added noise and Renyi
- divergence orders.
-
- Args:
- q (float): Sampling rate of each batch of samples.
- noise (float): Noise multiplier.
-
- Returns:
- float or numpy.ndarray, rdp values.
- """
- rdp = np.array(
- [_compute_rdp_order(q, noise, order) for order in self._orders])
- return rdp
-
- def _compute_privacy_budget(self, rdp):
- """
- Compute delta or eps for given rdp.
-
- Args:
- rdp (Union[float, numpy.ndarray]): Renyi differential privacy.
-
- Returns:
- float, delta budget or eps budget.
- """
- if self._target_eps is not None:
- delta = self._compute_delta(rdp)
- return self._target_eps, delta
- eps = self._compute_eps(rdp)
- return eps, self._target_delta
-
- def _compute_delta(self, rdp):
- """
- Compute delta for given rdp and eps.
-
- Args:
- rdp (Union[float, numpy.ndarray]): Renyi differential privacy.
-
- Returns:
- float, delta budget.
- """
- orders = np.atleast_1d(self._orders)
- rdps = np.atleast_1d(rdp)
- if len(orders) != len(rdps):
- msg = 'rdp lists and orders list must have the same length.'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
-
- deltas = np.exp((rdps - self._target_eps) * (orders - 1))
- min_delta = min(deltas)
- return min(min_delta, 1.)
-
- def _compute_eps(self, rdp):
- """
- Compute eps for given rdp and delta.
-
- Args:
- rdp (Union[float, numpy.ndarray]): Renyi differential privacy.
-
- Returns:
- float, eps budget.
- """
- orders = np.atleast_1d(self._orders)
- rdps = np.atleast_1d(rdp)
- if len(orders) != len(rdps):
- msg = 'rdp lists and orders list must have the same length.'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- eps = rdps - math.log(self._target_delta) / (orders - 1)
- return min(eps)
-
-
- def _compute_rdp_order(q, sigma, alpha):
- """
- Compute rdp for each order.
-
- Args:
- q (float): Sampling probability.
- sigma (float): Noise multiplier.
- alpha: The order used for computing rdp.
-
- Returns:
- float, rdp value.
- """
- if float(alpha).is_integer():
- log_integrate = -np.inf
- for k in range(alpha + 1):
- term_k = (math.log(
- special.binom(alpha, k)) + k * math.log(q) + (
- alpha - k) * math.log(
- 1 - q)) + (k * k - k) / (2 * (sigma ** 2))
- log_integrate = _log_add(log_integrate, term_k)
- return float(log_integrate) / (alpha - 1)
- log_part_0, log_part_1 = -np.inf, -np.inf
- k = 0
- z0 = sigma ** 2 * math.log(1 / q - 1) + 1 / 2
- while True:
- bi_coef = special.binom(alpha, k)
- log_coef = math.log(abs(bi_coef))
- j = alpha - k
-
- term_k_part_0 = log_coef + k * math.log(q) + j * math.log(1 - q) + (
- k * k - k) / (2 * (sigma ** 2)) + special.log_ndtr(
- (z0 - k) / sigma)
-
- term_k_part_1 = log_coef + j * math.log(q) + k * math.log(1 - q) + (
- j * j - j) / (2 * (sigma ** 2)) + special.log_ndtr(
- (j - z0) / sigma)
-
- if bi_coef > 0:
- log_part_0 = _log_add(log_part_0, term_k_part_0)
- log_part_1 = _log_add(log_part_1, term_k_part_1)
- else:
- log_part_0 = _log_subtract(log_part_0, term_k_part_0)
- log_part_1 = _log_subtract(log_part_1, term_k_part_1)
-
- k += 1
- if max(term_k_part_0, term_k_part_1) < -30:
- break
-
- return _log_add(log_part_0, log_part_1) / (alpha - 1)
-
-
- def _log_add(x, y):
- """
- Add x and y in log space.
- """
- if x == -np.inf:
- return y
- if y == -np.inf:
- return x
- return max(x, y) + math.log1p(math.exp(-abs(x - y)))
-
-
- def _log_subtract(x, y):
- """
- Subtract y from x in log space, x must be greater than y.
- """
- if x <= y:
- msg = 'The antilog of log functions must be positive'
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- if y == -np.inf:
- return x
- return math.log1p(math.exp(y - x)) + x
|