|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Noise Mechanisms.
- """
- from abc import abstractmethod
-
- from mindspore import Tensor
- from mindspore.nn import Cell
- from mindspore.ops import operations as P
- from mindspore.ops.composite import normal
- from mindspore.common.parameter import Parameter
- from mindspore.common import dtype as mstype
-
- from mindarmour.utils._check_param import check_param_type
- from mindarmour.utils._check_param import check_value_positive
- from mindarmour.utils._check_param import check_param_in_range
- from mindarmour.utils._check_param import check_value_non_negative
- from mindarmour.utils.logger import LogUtil
-
- LOGGER = LogUtil.get_instance()
- TAG = 'NoiseMechanism'
-
-
- class ClipMechanismsFactory:
- """ Factory class of clip mechanisms"""
-
- def __init__(self):
- pass
-
- @staticmethod
- def create(mech_name, decay_policy='Linear', learning_rate=0.001,
- target_unclipped_quantile=0.9, fraction_stddev=0.01, seed=0):
- """
- Args:
- mech_name(str): Clip noise generated strategy, support 'Gaussian' now.
- decay_policy(str): Decay policy of adaptive clipping, decay_policy must
- be in ['Linear', 'Geometric']. Default: Linear.
- learning_rate(float): Learning rate of update norm clip. Default: 0.001.
- target_unclipped_quantile(float): Target quantile of norm clip. Default: 0.9.
- fraction_stddev(float): The stddev of Gaussian normal which used in
- empirical_fraction, the formula is :math:`empirical fraction + N(0, fraction sstddev)`.
- Default: 0.01.
- seed(int): Original random seed, if seed=0 random normal will use secure
- random number. IF seed!=0 random normal will generate values using
- given seed. Default: 0.
-
- Raises:
- NameError: `mech_name` must be in ['Gaussian'].
-
- Returns:
- Mechanisms, class of noise generated Mechanism.
-
- Examples:
- >>> decay_policy = 'Linear'
- >>> beta = Tensor(0.5, mstype.float32)
- >>> norm_bound = Tensor(1.0, mstype.float32)
- >>> beta_stddev = 0.1
- >>> learning_rate = 0.1
- >>> target_unclipped_quantile = 0.3
- >>> clip_mechanism = ClipMechanismsFactory()
- >>> ada_clip = clip_mechanism.create('Gaussian',
- >>> decay_policy=decay_policy,
- >>> learning_rate=learning_rate,
- >>> target_unclipped_quantile=target_unclipped_quantile,
- >>> fraction_stddev=beta_stddev)
- >>> next_norm_bound = ada_clip(beta, norm_bound)
-
- """
- if mech_name == 'Gaussian':
- return AdaClippingWithGaussianRandom(decay_policy, learning_rate,
- target_unclipped_quantile, fraction_stddev, seed)
- raise NameError("The {} is not implement, please choose "
- "['Gaussian']".format(mech_name))
-
-
- class NoiseMechanismsFactory:
- """ Factory class of noise mechanisms"""
-
- def __init__(self):
- pass
-
- @staticmethod
- def create(mech_name, norm_bound=1.0, initial_noise_multiplier=1.0, seed=0, noise_decay_rate=6e-6,
- decay_policy=None):
- """
- Args:
- mech_name(str): Noise generated strategy, could be 'Gaussian' or
- 'AdaGaussian'. Noise would be decayed with 'AdaGaussian' mechanism
- while be constant with 'Gaussian' mechanism.
- norm_bound(float): Clipping bound for the l2 norm of the gradients. Default: 1.0.
- initial_noise_multiplier(float): Ratio of the standard deviation of
- Gaussian noise divided by the norm_bound, which will be used to
- calculate privacy spent. Default: 1.0.
- seed(int): Original random seed, if seed=0 random normal will use secure
- random number. IF seed!=0 random normal will generate values using
- given seed. Default: 0.
- noise_decay_rate(float): Hyper parameter for controlling the noise decay. Default: 6e-6.
- decay_policy(str): Mechanisms parameters update policy. Default: None, no
- parameters need update. Default: None.
-
- Raises:
- NameError: `mech_name` must be in ['Gaussian', 'AdaGaussian'].
-
- Returns:
- Mechanisms, class of noise generated Mechanism.
-
- Examples:
- >>> norm_bound = 1.0
- >>> initial_noise_multiplier = 0.01
- >>> network = LeNet5()
- >>> batch_size = 32
- >>> batches = 128
- >>> epochs = 1
- >>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
- >>> noise_mech = NoiseMechanismsFactory().create('Gaussian',
- >>> norm_bound=norm_bound,
- >>> initial_noise_multiplier=initial_noise_multiplier)
- >>> clip_mech = ClipMechanismsFactory().create('Gaussian',
- >>> decay_policy='Linear',
- >>> learning_rate=0.01,
- >>> target_unclipped_quantile=0.9,
- >>> fraction_stddev=0.01)
- >>> net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.1,
- >>> momentum=0.9)
- >>> model = DPModel(micro_batches=2,
- >>> clip_mech=clip_mech,
- >>> norm_bound=norm_bound,
- >>> noise_mech=noise_mech,
- >>> network=network,
- >>> loss_fn=loss,
- >>> optimizer=net_opt,
- >>> metrics=None)
- >>> ms_ds = ds.GeneratorDataset(dataset_generator,
- >>> ['data', 'label'])
- >>> model.train(epochs, ms_ds, dataset_sink_mode=False)
- """
- if mech_name == 'Gaussian':
- return NoiseGaussianRandom(norm_bound=norm_bound,
- initial_noise_multiplier=initial_noise_multiplier,
- seed=seed,
- decay_policy=decay_policy)
- if mech_name == 'AdaGaussian':
- return NoiseAdaGaussianRandom(norm_bound=norm_bound,
- initial_noise_multiplier=initial_noise_multiplier,
- seed=seed,
- noise_decay_rate=noise_decay_rate,
- decay_policy=decay_policy)
- raise NameError("The {} is not implement, please choose "
- "['Gaussian', 'AdaGaussian']".format(mech_name))
-
-
- class _Mechanisms(Cell):
- """
- Basic class of noise generated mechanism.
- """
-
- @abstractmethod
- def construct(self, gradients):
- """
- Construct function.
- """
-
-
- class NoiseGaussianRandom(_Mechanisms):
- """
- Gaussian noise generated mechanism.
-
- Args:
- norm_bound(float): Clipping bound for the l2 norm of the gradients.
- Default: 1.0.
- initial_noise_multiplier(float): Ratio of the standard deviation of
- Gaussian noise divided by the norm_bound, which will be used to
- calculate privacy spent. Default: 1.0.
- seed(int): Original random seed, if seed=0, random normal will use secure
- random number. If seed!=0, random normal will generate values using
- given seed. Default: 0.
- decay_policy(str): Mechanisms parameters update policy. Default: None.
-
- Returns:
- Tensor, generated noise with shape like given gradients.
-
- Examples:
- >>> gradients = Tensor([0.2, 0.9], mstype.float32)
- >>> norm_bound = 0.5
- >>> initial_noise_multiplier = 1.5
- >>> seed = 0
- >>> decay_policy = None
- >>> net = NoiseGaussianRandom(norm_bound, initial_noise_multiplier, seed, decay_policy)
- >>> res = net(gradients)
- >>> print(res)
- """
-
- def __init__(self, norm_bound=1.0, initial_noise_multiplier=1.0, seed=0, decay_policy=None):
- super(NoiseGaussianRandom, self).__init__()
- norm_bound = check_param_type('norm_bound', norm_bound, float)
- self._norm_bound = check_value_positive('norm_bound', norm_bound)
- self._norm_bound = Tensor(norm_bound, mstype.float32)
- initial_noise_multiplier = check_param_type('initial_noise_multiplier', initial_noise_multiplier, float)
- self._initial_noise_multiplier = check_value_positive('initial_noise_multiplier',
- initial_noise_multiplier)
- self._initial_noise_multiplier = Tensor(initial_noise_multiplier, mstype.float32)
- self._mean = Tensor(0, mstype.float32)
- if decay_policy is not None:
- raise ValueError('decay_policy must be None in GaussianRandom class, but got {}.'.format(decay_policy))
- self._decay_policy = decay_policy
- seed = check_param_type('seed', seed, int)
- self._seed = check_value_non_negative('seed', seed)
-
- def construct(self, gradients):
- """
- Generated Gaussian noise.
-
- Args:
- gradients(Tensor): The gradients.
-
- Returns:
- Tensor, generated noise with shape like given gradients.
- """
- shape = P.Shape()(gradients)
- stddev = P.Mul()(self._norm_bound, self._initial_noise_multiplier)
- noise = normal(shape, self._mean, stddev, self._seed)
- return noise
-
-
- class NoiseAdaGaussianRandom(NoiseGaussianRandom):
- """
- Adaptive Gaussian noise generated mechanism. Noise would be decayed with
- training. Decay mode could be 'Time' mode, 'Step' mode, 'Exp' mode.
- `self._noise_multiplier` will be update during the model.train, using
- _MechanismsParamsUpdater.
-
- Args:
- norm_bound(float): Clipping bound for the l2 norm of the gradients.
- Default: 1.0.
- initial_noise_multiplier(float): Ratio of the standard deviation of
- Gaussian noise divided by the norm_bound, which will be used to
- calculate privacy spent. Default: 1.0.
- seed(int): Original random seed, if seed=0 random normal will use secure
- random number. IF seed!=0 random normal will generate values using
- given seed. Default: 0.
- noise_decay_rate(float): Hyper parameter for controlling the noise decay.
- Default: 6e-6.
- decay_policy(str): Noise decay strategy include 'Step', 'Time', 'Exp'.
- Default: 'Exp'.
-
- Returns:
- Tensor, generated noise with shape like given gradients.
-
- Examples:
- >>> gradients = Tensor([0.2, 0.9], mstype.float32)
- >>> norm_bound = 1.0
- >>> initial_noise_multiplier = 1.5
- >>> seed = 0
- >>> noise_decay_rate = 6e-4
- >>> decay_policy = "Exp"
- >>> net = NoiseAdaGaussianRandom(norm_bound, initial_noise_multiplier, seed, noise_decay_rate, decay_policy)
- >>> res = net(gradients)
- >>> print(res)
- """
-
- def __init__(self, norm_bound=1.0, initial_noise_multiplier=1.0, seed=0, noise_decay_rate=6e-6, decay_policy='Exp'):
- super(NoiseAdaGaussianRandom, self).__init__(norm_bound=norm_bound,
- initial_noise_multiplier=initial_noise_multiplier,
- seed=seed)
- self._noise_multiplier = Parameter(self._initial_noise_multiplier,
- name='noise_multiplier')
- noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
- check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
- self._noise_decay_rate = Tensor(noise_decay_rate, mstype.float32)
- if decay_policy not in ['Time', 'Step', 'Exp']:
- raise NameError("The decay_policy must be in ['Time', 'Step', 'Exp'], but "
- "get {}".format(decay_policy))
- self._decay_policy = decay_policy
-
- def construct(self, gradients):
- """
- Generated Adaptive Gaussian noise.
-
- Args:
- gradients(Tensor): The gradients.
-
- Returns:
- Tensor, generated noise with shape like given gradients.
- """
- shape = P.Shape()(gradients)
- stddev = P.Mul()(self._norm_bound, self._noise_multiplier)
- noise = normal(shape, self._mean, stddev, self._seed)
- return noise
-
-
- class _MechanismsParamsUpdater(Cell):
- """
- Update mechanisms parameters, the parameters will refresh in train period.
-
- Args:
- decay_policy(str): Pass in by the mechanisms class, mechanisms parameters
- update policy.
- decay_rate(Tensor): Pass in by the mechanisms class, hyper parameter for
- controlling the decay size.
- cur_noise_multiplier(Parameter): Pass in by the mechanisms class,
- current params value in this time.
- init_noise_multiplier(Parameter):Pass in by the mechanisms class,
- initial params value to be updated.
-
- Returns:
- Tuple, next params value.
- """
- def __init__(self, decay_policy, decay_rate, cur_noise_multiplier, init_noise_multiplier):
- super(_MechanismsParamsUpdater, self).__init__()
- self._decay_policy = decay_policy
- self._decay_rate = decay_rate
- self._cur_noise_multiplier = cur_noise_multiplier
- self._init_noise_multiplier = init_noise_multiplier
-
- self._div = P.Div()
- self._add = P.Add()
- self._assign = P.Assign()
- self._sub = P.Sub()
- self._one = Tensor(1, mstype.float32)
- self._mul = P.Mul()
- self._exp = P.Exp()
-
- def construct(self):
- """
- update parameters to `self._cur_params`.
-
- Returns:
- Tuple, next step parameters value.
- """
- if self._decay_policy == 'Time':
- temp = self._div(self._init_noise_multiplier, self._cur_noise_multiplier)
- temp = self._add(temp, self._decay_rate)
- next_noise_multiplier = self._assign(self._cur_noise_multiplier,
- self._div(self._init_noise_multiplier, temp))
- elif self._decay_policy == 'Step':
- temp = self._sub(self._one, self._decay_rate)
- next_noise_multiplier = self._assign(self._cur_noise_multiplier,
- self._mul(temp, self._cur_noise_multiplier))
- else:
- next_noise_multiplier = self._assign(self._cur_noise_multiplier,
- self._div(self._cur_noise_multiplier, self._exp(self._decay_rate)))
- return next_noise_multiplier
-
-
- class AdaClippingWithGaussianRandom(Cell):
- """
- Adaptive clipping. If `decay_policy` is 'Linear', the update formula :math:`norm bound = norm bound -
- learning rate*(beta - target unclipped quantile)`.
- If `decay_policy` is 'Geometric', the update formula is :math:`norm bound =
- norm bound*exp(-learning rate*(empirical fraction - target unclipped quantile))`.
- where beta is the empirical fraction of samples with the value at most
- `target_unclipped_quantile`.
-
- Args:
- decay_policy(str): Decay policy of adaptive clipping, decay_policy must
- be in ['Linear', 'Geometric']. Default: Linear.
- learning_rate(float): Learning rate of update norm clip. Default: 0.001.
- target_unclipped_quantile(float): Target quantile of norm clip. Default: 0.9.
- fraction_stddev(float): The stddev of Gaussian normal which used in
- empirical_fraction, the formula is empirical_fraction + N(0, fraction_stddev).
- Default: 0.01.
- seed(int): Original random seed, if seed=0 random normal will use secure
- random number. IF seed!=0 random normal will generate values using
- given seed. Default: 0.
-
- Returns:
- Tensor, undated norm clip .
-
- Examples:
- >>> decay_policy = 'Linear'
- >>> beta = Tensor(0.5, mstype.float32)
- >>> norm_bound = Tensor(1.0, mstype.float32)
- >>> beta_stddev = 0.01
- >>> learning_rate = 0.001
- >>> target_unclipped_quantile = 0.9
- >>> ada_clip = AdaClippingWithGaussianRandom(decay_policy=decay_policy,
- >>> learning_rate=learning_rate,
- >>> target_unclipped_quantile=target_unclipped_quantile,
- >>> fraction_stddev=beta_stddev)
- >>> next_norm_bound = ada_clip(beta, norm_bound)
-
- """
-
- def __init__(self, decay_policy='Linear', learning_rate=0.001,
- target_unclipped_quantile=0.9, fraction_stddev=0.01, seed=0):
- super(AdaClippingWithGaussianRandom, self).__init__()
- if decay_policy not in ['Linear', 'Geometric']:
- msg = "decay policy of adaptive clip must be in ['Linear', 'Geometric'], \
- but got: {}".format(decay_policy)
- LOGGER.error(TAG, msg)
- raise ValueError(msg)
- self._decay_policy = decay_policy
- learning_rate = check_param_type('learning_rate', learning_rate, float)
- learning_rate = check_value_positive('learning_rate', learning_rate)
- self._learning_rate = Tensor(learning_rate, mstype.float32)
- fraction_stddev = check_param_type('fraction_stddev', fraction_stddev, float)
- self._fraction_stddev = Tensor(fraction_stddev, mstype.float32)
- target_unclipped_quantile = check_param_type('target_unclipped_quantile',
- target_unclipped_quantile,
- float)
- self._target_unclipped_quantile = Tensor(target_unclipped_quantile,
- mstype.float32)
-
- self._zero = Tensor(0, mstype.float32)
- self._add = P.Add()
- self._sub = P.Sub()
- self._mul = P.Mul()
- self._exp = P.Exp()
- seed = check_param_type('seed', seed, int)
- self._seed = check_value_non_negative('seed', seed)
-
- def construct(self, empirical_fraction, norm_bound):
- """
- Update value of norm_bound.
-
- Args:
- empirical_fraction(Tensor): empirical fraction of samples with the
- value at most `target_unclipped_quantile`.
- norm_bound(Tensor): Clipping bound for the l2 norm of the gradients.
-
- Returns:
- Tensor, generated noise with shape like given gradients.
- """
- fraction_noise = normal((1,), self._zero, self._fraction_stddev, self._seed)
- empirical_fraction = self._add(empirical_fraction, fraction_noise)
- if self._decay_policy == 'Linear':
- grad_clip = self._sub(empirical_fraction,
- self._target_unclipped_quantile)
- next_norm_bound = self._sub(norm_bound,
- self._mul(self._learning_rate, grad_clip))
-
- else:
- grad_clip = self._sub(empirical_fraction,
- self._target_unclipped_quantile)
- grad_clip = self._exp(self._mul(-self._learning_rate, grad_clip))
- next_norm_bound = self._mul(norm_bound, grad_clip)
- return next_norm_bound
|