|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """loss callback"""
-
- import time
- import numpy as np
- from mindspore.train.callback import Callback
- from .util import AverageMeter
-
- class LossCallBack(Callback):
- """
- Monitor the loss in training.
-
- If the loss is NAN or INF terminating training.
-
- Note:
- If per_print_times is 0 do not print loss.
-
- Args:
- per_print_times (int): Print loss every times. Default: 1.
- """
-
- def __init__(self, per_print_times=1):
- super(LossCallBack, self).__init__()
- if not isinstance(per_print_times, int) or per_print_times < 0:
- raise ValueError("print_step must be int and >= 0.")
- self._per_print_times = per_print_times
- self.loss_avg = AverageMeter()
- self.timer = AverageMeter()
- self.start_time = time.time()
-
- def step_end(self, run_context):
- """step end."""
- cb_params = run_context.original_args()
-
- loss = np.array(cb_params.net_outputs)
-
- cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
- cur_num = cb_params.cur_step_num
-
- if cur_step_in_epoch % 2000 == 1:
- self.loss_avg = AverageMeter()
- self.timer = AverageMeter()
- self.start_time = time.time()
- else:
- self.timer.update(time.time() - self.start_time)
- self.start_time = time.time()
-
- self.loss_avg.update(loss)
-
- if self._per_print_times != 0 and cur_num % self._per_print_times == 0:
- loss_file = open("./loss.log", "a+")
- loss_file.write("epoch: %s step: %s , loss is %s, average time per step is %s" % (
- cb_params.cur_epoch_num, cur_step_in_epoch,
- self.loss_avg.avg, self.timer.avg))
- loss_file.write("\n")
- loss_file.close()
-
- print("epoch: %s step: %s , loss is %s, average time per step is %s" % (
- cb_params.cur_epoch_num, cur_step_in_epoch,
- self.loss_avg.avg, self.timer.avg))
|