diff --git a/mindarmour/diff_privacy/mechanisms/mechanisms.py b/mindarmour/diff_privacy/mechanisms/mechanisms.py index 1a8de17..f0608c4 100644 --- a/mindarmour/diff_privacy/mechanisms/mechanisms.py +++ b/mindarmour/diff_privacy/mechanisms/mechanisms.py @@ -106,7 +106,7 @@ class GaussianRandom(Mechanisms): shape(tuple): The shape of gradients. Returns: - numpy.ndarray, generated noise. + Tensor, generated noise. """ shape = check_param_type('shape', shape, tuple) noise = np.random.normal(self._mean, self._stddev, shape) @@ -136,7 +136,7 @@ class AdaGaussianRandom(Mechanisms): >>> norm_bound = 1.0 >>> initial_noise_multiplier = 0.1 >>> alpha = 0.5 - >>> decay_policy = "Step" + >>> decay_policy = "Time" >>> net = AdaGaussianRandom(norm_bound, initial_noise_multiplier, >>> alpha, decay_policy) >>> res = net(shape) @@ -144,7 +144,7 @@ class AdaGaussianRandom(Mechanisms): """ def __init__(self, norm_bound=1.5, initial_noise_multiplier=5.0, - alpha=6e-4, decay_policy='Step'): + alpha=6e-4, decay_policy='Time'): super(AdaGaussianRandom, self).__init__() initial_noise_multiplier = check_value_positive('initial_noise_multiplier', initial_noise_multiplier) @@ -194,7 +194,7 @@ class AdaGaussianRandom(Mechanisms): shape(tuple): The shape of gradients. Returns: - numpy.ndarray, generated noise. + Tensor, generated noise. """ shape = check_param_type('shape', shape, tuple) noise = np.random.normal(self._mean, self._stddev.asnumpy(),