From: @jxlang910 Reviewed-by: @pkuliuliu,@liu_luobin Signed-off-by: @pkuliuliutags/v1.3.0
| @@ -136,10 +136,10 @@ class AttackEvaluate: | |||||
| - float, return average l0, l2, or linf distance of all success | - float, return average l0, l2, or linf distance of all success | ||||
| adversarial examples, return value includes following cases. | adversarial examples, return value includes following cases. | ||||
| - If return value :math:`>=` 0, average lp distance. The lower, | |||||
| the more successful the attack is. | |||||
| - If return value :math:`>=` 0, average lp distance. The lower, | |||||
| the more successful the attack is. | |||||
| - If return value is -1, there is no success adversarial examples. | |||||
| - If return value is -1, there is no success adversarial examples. | |||||
| """ | """ | ||||
| idxes = self._success_idxes | idxes = self._success_idxes | ||||
| success_num = idxes.shape[0] | success_num = idxes.shape[0] | ||||
| @@ -164,10 +164,10 @@ class AttackEvaluate: | |||||
| Returns: | Returns: | ||||
| - float, average structural similarity. | - float, average structural similarity. | ||||
| - If return value ranges between (0, 1), the higher, the more | |||||
| successful the attack is. | |||||
| - If return value ranges between (0, 1), the higher, the more | |||||
| successful the attack is. | |||||
| - If return value is -1: there is no success adversarial examples. | |||||
| - If return value is -1: there is no success adversarial examples. | |||||
| """ | """ | ||||
| success_num = self._success_idxes.shape[0] | success_num = self._success_idxes.shape[0] | ||||
| if success_num == 0: | if success_num == 0: | ||||
| @@ -183,8 +183,8 @@ class NoiseGaussianRandom(_Mechanisms): | |||||
| initial_noise_multiplier(float): Ratio of the standard deviation of | initial_noise_multiplier(float): Ratio of the standard deviation of | ||||
| Gaussian noise divided by the norm_bound, which will be used to | Gaussian noise divided by the norm_bound, which will be used to | ||||
| calculate privacy spent. Default: 1.0. | calculate privacy spent. Default: 1.0. | ||||
| seed(int): Original random seed, if seed=0 random normal will use secure | |||||
| random number. IF seed!=0 random normal will generate values using | |||||
| seed(int): Original random seed, if seed=0, random normal will use secure | |||||
| random number. If seed!=0, random normal will generate values using | |||||
| given seed. Default: 0. | given seed. Default: 0. | ||||
| decay_policy(str): Mechanisms parameters update policy. Default: None. | decay_policy(str): Mechanisms parameters update policy. Default: None. | ||||
| @@ -95,7 +95,7 @@ def _softmax_cross_entropy(logits, labels): | |||||
| class MembershipInference: | class MembershipInference: | ||||
| """ | """ | ||||
| Evaluation proposed by Shokri, Stronati, Song and Shmatikov is a grey-box attack. | Evaluation proposed by Shokri, Stronati, Song and Shmatikov is a grey-box attack. | ||||
| The attack requires obtain loss or logits results of training samples. | |||||
| The attack requires loss or logits results of training samples. | |||||
| References: `Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov. | References: `Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov. | ||||
| Membership Inference Attacks against Machine Learning Models. 2017. | Membership Inference Attacks against Machine Learning Models. 2017. | ||||