| @@ -52,13 +52,13 @@ class Contrast(ImageTransform): | |||
| def random_param(self): | |||
| """ Random generate parameters. """ | |||
| self.factor = random.uniform(-10, 10) | |||
| self.factor = random.uniform(-5, 5) | |||
| def transform(self): | |||
| img = Image.fromarray(self.image, self.mode) | |||
| img = Image.fromarray(np.uint8(self.image*255), self.mode) | |||
| img_contrast = ImageEnhance.Contrast(img) | |||
| trans_image = img_contrast.enhance(self.factor) | |||
| trans_image = np.array(trans_image) | |||
| trans_image = np.array(trans_image)/255 | |||
| return trans_image | |||
| @@ -79,13 +79,13 @@ class Brightness(ImageTransform): | |||
| def random_param(self): | |||
| """ Random generate parameters. """ | |||
| self.factor = random.uniform(-10, 10) | |||
| self.factor = random.uniform(0, 5) | |||
| def transform(self): | |||
| img = Image.fromarray(self.image, self.mode) | |||
| img = Image.fromarray(np.uint8(self.image*255), self.mode) | |||
| img_contrast = ImageEnhance.Brightness(img) | |||
| trans_image = img_contrast.enhance(self.factor) | |||
| trans_image = np.array(trans_image) | |||
| trans_image = np.array(trans_image)/255 | |||
| return trans_image | |||
| @@ -106,13 +106,13 @@ class Blur(ImageTransform): | |||
| def random_param(self): | |||
| """ Random generate parameters. """ | |||
| self.radius = random.uniform(-10, 10) | |||
| self.radius = random.uniform(-1.5, 1.5) | |||
| def transform(self): | |||
| """ Transform the image. """ | |||
| img = Image.fromarray(self.image, self.mode) | |||
| img = Image.fromarray(np.uint8(self.image*255), self.mode) | |||
| trans_image = img.filter(ImageFilter.GaussianBlur(radius=self.radius)) | |||
| trans_image = np.array(trans_image) | |||
| trans_image = np.array(trans_image)/255 | |||
| return trans_image | |||
| @@ -133,14 +133,14 @@ class Noise(ImageTransform): | |||
| def random_param(self): | |||
| """ random generate parameters """ | |||
| self.factor = random.uniform(-1, 1) | |||
| self.factor = random.uniform(0.7, 1) | |||
| def transform(self): | |||
| """ Random generate parameters. """ | |||
| noise = np.random.uniform(low=-1, high=1, size=self.image.shape) | |||
| trans_image = np.copy(self.image) | |||
| trans_image[noise < -self.factor] = 0 | |||
| trans_image[noise > self.factor] = 255 | |||
| trans_image[noise > self.factor] = 1 | |||
| trans_image = np.array(trans_image) | |||
| return trans_image | |||
| @@ -163,15 +163,15 @@ class Translate(ImageTransform): | |||
| def random_param(self): | |||
| """ Random generate parameters. """ | |||
| image_shape = np.shape(self.image) | |||
| self.x_bias = random.uniform(0, image_shape[0]) | |||
| self.y_bias = random.uniform(0, image_shape[1]) | |||
| self.x_bias = random.uniform(-image_shape[0]/3, image_shape[0]/3) | |||
| self.y_bias = random.uniform(-image_shape[1]/3, image_shape[1]/3) | |||
| def transform(self): | |||
| """ Transform the image. """ | |||
| img = Image.fromarray(self.image, self.mode) | |||
| img = Image.fromarray(np.uint8(self.image*255), self.mode) | |||
| trans_image = img.transform(img.size, Image.AFFINE, | |||
| (1, 0, self.x_bias, 0, 1, self.y_bias)) | |||
| trans_image = np.array(trans_image) | |||
| trans_image = np.array(trans_image)/255 | |||
| return trans_image | |||
| @@ -192,15 +192,15 @@ class Scale(ImageTransform): | |||
| def random_param(self): | |||
| """ Random generate parameters. """ | |||
| self.factor_x = random.uniform(0, 1) | |||
| self.factor_y = random.uniform(0, 1) | |||
| self.factor_x = random.uniform(0.7, 2) | |||
| self.factor_y = random.uniform(0.7, 2) | |||
| def transform(self): | |||
| """ Transform the image. """ | |||
| img = Image.fromarray(self.image, self.mode) | |||
| img = Image.fromarray(np.uint8(self.image*255), self.mode) | |||
| trans_image = img.transform(img.size, Image.AFFINE, | |||
| (self.factor_x, 0, 0, 0, self.factor_y, 0)) | |||
| trans_image = np.array(trans_image) | |||
| trans_image = np.array(trans_image)/255 | |||
| return trans_image | |||
| @@ -225,7 +225,7 @@ class Shear(ImageTransform): | |||
| def transform(self): | |||
| """ Transform the image. """ | |||
| img = Image.fromarray(self.image, self.mode) | |||
| img = Image.fromarray(np.uint8(self.image*255), self.mode) | |||
| if np.random.random() > 0.5: | |||
| level = -self.factor | |||
| else: | |||
| @@ -236,7 +236,7 @@ class Shear(ImageTransform): | |||
| else: | |||
| trans_image = img.transform(img.size, Image.AFFINE, | |||
| (1, 0, 0, level, 1, 0)) | |||
| trans_image = np.array(trans_image, dtype=np.float) | |||
| trans_image = np.array(trans_image, dtype=np.float)/255 | |||
| return trans_image | |||
| @@ -261,7 +261,7 @@ class Rotate(ImageTransform): | |||
| def transform(self): | |||
| """ Transform the image. """ | |||
| img = Image.fromarray(self.image, self.mode) | |||
| img = Image.fromarray(np.uint8(self.image*255), self.mode) | |||
| trans_image = img.rotate(self.angle) | |||
| trans_image = np.array(trans_image) | |||
| trans_image = np.array(trans_image)/255 | |||
| return trans_image | |||