Browse Source

add an example of fuzz testing and model enhense

tags/v1.1.0
ZhidanLiu 4 years ago
parent
commit
ecd43af923
3 changed files with 172 additions and 3 deletions
  1. +169
    -0
      examples/ai_fuzzer/fuzz_testing_and_model_enhense.py
  2. +2
    -2
      examples/common/dataset/data_processing.py
  3. +1
    -1
      mindarmour/fuzz_testing/fuzzing.py

+ 169
- 0
examples/ai_fuzzer/fuzz_testing_and_model_enhense.py View File

@@ -0,0 +1,169 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
An example of fuzz testing and then enhance non-robustness model.
"""
import random
import numpy as np

import mindspore
from mindspore import Model
from mindspore import context
from mindspore import Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.nn.optim.momentum import Momentum

from mindarmour.adv_robustness.defenses import AdversarialDefense
from mindarmour.fuzz_testing import Fuzzer
from mindarmour.fuzz_testing import ModelCoverageMetrics
from mindarmour.utils.logger import LogUtil

from examples.common.dataset.data_processing import generate_mnist_dataset
from examples.common.networks.lenet5.lenet5_net import LeNet5

LOGGER = LogUtil.get_instance()
TAG = 'Fuzz_testing and enhance model'
LOGGER.set_level('INFO')


def example_lenet_mnist_fuzzing():
"""
An example of fuzz testing and then enhance the non-robustness model.
"""
# upload trained network
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/lenet_m1-10_1250.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_path)
load_param_into_net(net, load_dict)
model = Model(net)
mutate_config = [{'method': 'Blur',
'params': {'auto_param': [True]}},
{'method': 'Contrast',
'params': {'auto_param': [True]}},
{'method': 'Translate',
'params': {'auto_param': [True]}},
{'method': 'Brightness',
'params': {'auto_param': [True]}},
{'method': 'Noise',
'params': {'auto_param': [True]}},
{'method': 'Scale',
'params': {'auto_param': [True]}},
{'method': 'Shear',
'params': {'auto_param': [True]}},
{'method': 'FGSM',
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1]}}
]

# get training data
data_list = "../common/dataset/MNIST/train"
batch_size = 32
ds = generate_mnist_dataset(data_list, batch_size, sparse=False)
train_images = []
for data in ds.create_tuple_iterator(output_numpy=True):
images = data[0].astype(np.float32)
train_images.append(images)
train_images = np.concatenate(train_images, axis=0)

# initialize fuzz test with training dataset
model_coverage_test = ModelCoverageMetrics(model, 10, 1000, train_images)

# fuzz test with original test data
# get test data
data_list = "../common/dataset/MNIST/test"
batch_size = 32
init_samples = 5000
max_iters = 50000
mutate_num_per_seed = 10
ds = generate_mnist_dataset(data_list, batch_size, num_samples=init_samples,
sparse=False)
test_images = []
test_labels = []
for data in ds.create_tuple_iterator(output_numpy=True):
images = data[0].astype(np.float32)
labels = data[1]
test_images.append(images)
test_labels.append(labels)
test_images = np.concatenate(test_images, axis=0)
test_labels = np.concatenate(test_labels, axis=0)
initial_seeds = []

# make initial seeds
for img, label in zip(test_images, test_labels):
initial_seeds.append([img, label])

model_coverage_test.calculate_coverage(
np.array(test_images[:100]).astype(np.float32))
LOGGER.info(TAG, 'KMNC of test dataset before fuzzing is : %s',
model_coverage_test.get_kmnc())
LOGGER.info(TAG, 'NBC of test dataset before fuzzing is : %s',
model_coverage_test.get_nbc())
LOGGER.info(TAG, 'SNAC of test dataset before fuzzing is : %s',
model_coverage_test.get_snac())

model_fuzz_test = Fuzzer(model, train_images, 10, 1000)
gen_samples, gt, _, _, metrics = model_fuzz_test.fuzzing(mutate_config,
initial_seeds,
eval_metrics='auto',
max_iters=max_iters,
mutate_num_per_seed=mutate_num_per_seed)

if metrics:
for key in metrics:
LOGGER.info(TAG, key + ': %s', metrics[key])

def split_dataset(image, label, proportion):
"""
Split the generated fuzz data into train and test set.
"""
indices = np.arange(len(image))
random.shuffle(indices)
train_length = int(len(image) * proportion)
train_image = [image[i] for i in indices[:train_length]]
train_label = [label[i] for i in indices[:train_length]]
test_image = [image[i] for i in indices[:train_length]]
test_label = [label[i] for i in indices[:train_length]]
return train_image, train_label, test_image, test_label

train_image, train_label, test_image, test_label = split_dataset(
gen_samples, gt, 0.7)

# load model B and test it on the test set
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/lenet_m2-10_1250.ckpt'
net = LeNet5()
load_dict = load_checkpoint(ckpt_path)
load_param_into_net(net, load_dict)
model_b = Model(net)
pred_b = model_b.predict(Tensor(test_image, dtype=mindspore.float32)).asnumpy()
acc_b = np.sum(np.argmax(pred_b, axis=1) == np.argmax(test_label, axis=1)) / len(test_label)
print('Accuracy of model B on test set is ', acc_b)

# enhense model robustness
lr = 0.001
momentum = 0.9
loss_fn = SoftmaxCrossEntropyWithLogits(Sparse=True)
optimizer = Momentum(net.trainable_params(), lr, momentum)

adv_defense = AdversarialDefense(net, loss_fn, optimizer)
adv_defense.batch_defense(np.array(train_image).astype(np.float32),
np.argmax(train_label, axis=1).astype(np.int32))
preds_en = net(Tensor(test_image, dtype=mindspore.float32)).asnumpy()
acc_en = np.sum(np.argmax(preds_en, axis=1) == np.argmax(test_label, axis=1)) / len(test_label)
print('Accuracy of enhensed model on test set is ', acc_en)


if __name__ == '__main__':
# device_target can be "CPU", "GPU" or "Ascend"
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
example_lenet_mnist_fuzzing()

+ 2
- 2
examples/common/dataset/data_processing.py View File

@@ -21,12 +21,12 @@ import mindspore.common.dtype as mstype


def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1, sparse=True):
num_samples=None, num_parallel_workers=1, sparse=True):
"""
create dataset for training or testing
"""
# define dataset
ds1 = ds.MnistDataset(data_path)
ds1 = ds.MnistDataset(data_path, num_samples=num_samples)

# define operation parameters
resize_height, resize_width = 32, 32


+ 1
- 1
mindarmour/fuzz_testing/fuzzing.py View File

@@ -204,7 +204,7 @@ class Fuzzer:
`self._attack_param_checklists`.
initial_seeds (list[list]): Initial seeds used to generate mutated
samples. The format of initial seeds is [[image_data, label],
[...], ...].
[...], ...] and the label must be one-hot.
coverage_metric (str): Model coverage metric of neural networks. All
supported metrics are: 'KMNC', 'NBC', 'SNAC'. Default: 'KMNC'.
eval_metrics (Union[list, tuple, str]): Evaluation metrics. If the


Loading…
Cancel
Save