Merge pull request !19 from jxlang910/mastertags/v0.3.0-alpha
@@ -33,7 +33,6 @@ LOGGER.set_level('INFO') | |||||
def test_lenet_mnist_coverage(): | def test_lenet_mnist_coverage(): | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -85,4 +84,6 @@ def test_lenet_mnist_coverage(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_lenet_mnist_coverage() | test_lenet_mnist_coverage() |
@@ -32,7 +32,6 @@ LOGGER.set_level('INFO') | |||||
def test_lenet_mnist_fuzzing(): | def test_lenet_mnist_fuzzing(): | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -87,4 +86,6 @@ def test_lenet_mnist_fuzzing(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_lenet_mnist_fuzzing() | test_lenet_mnist_fuzzing() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Model | from mindspore import Model | ||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
@@ -36,89 +35,10 @@ LOGGER.set_level('INFO') | |||||
TAG = 'CW_Test' | TAG = 'CW_Test' | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_carlini_wagner_attack(): | def test_carlini_wagner_attack(): | ||||
""" | """ | ||||
CW-Attack test | CW-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
num_classes = 10 | |||||
attack = CarliniWagnerL2Attack(net, num_classes, targeted=False) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
np.concatenate(test_labels), batch_size=32) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
accuracy_adv) | |||||
test_labels = np.eye(10)[np.concatenate(test_labels)] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
test_labels, adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_carlini_wagner_attack_cpu(): | |||||
""" | |||||
CW-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -188,4 +108,6 @@ def test_carlini_wagner_attack_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_carlini_wagner_attack_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_carlini_wagner_attack() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Model | from mindspore import Model | ||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
@@ -36,90 +35,10 @@ LOGGER.set_level('INFO') | |||||
TAG = 'DeepFool_Test' | TAG = 'DeepFool_Test' | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_deepfool_attack(): | def test_deepfool_attack(): | ||||
""" | """ | ||||
DeepFool-Attack test | DeepFool-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
classes = 10 | |||||
attack = DeepFool(net, classes, norm_level=2, | |||||
bounds=(0.0, 1.0)) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
np.concatenate(test_labels), batch_size=32) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
accuracy_adv) | |||||
test_labels = np.eye(10)[np.concatenate(test_labels)] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
test_labels, adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_deepfool_attack_cpu(): | |||||
""" | |||||
DeepFool-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -190,4 +109,6 @@ def test_deepfool_attack_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_deepfool_attack_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_deepfool_attack() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Model | from mindspore import Model | ||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
@@ -37,88 +36,10 @@ LOGGER.set_level('INFO') | |||||
TAG = 'FGSM_Test' | TAG = 'FGSM_Test' | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_fast_gradient_sign_method(): | def test_fast_gradient_sign_method(): | ||||
""" | |||||
FGSM-Attack test | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=False) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.argmax(np.concatenate(test_labels), axis=1) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
attack = FastGradientSignMethod(net, eps=0.3) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
np.concatenate(test_labels), batch_size=32) | |||||
stop_time = time.clock() | |||||
np.save('./adv_data', adv_data) | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
np.concatenate(test_labels), | |||||
adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_fast_gradient_sign_method_cpu(): | |||||
""" | """ | ||||
FGSM-Attack test for CPU device. | FGSM-Attack test for CPU device. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -188,4 +109,6 @@ def test_fast_gradient_sign_method_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_fast_gradient_sign_method_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_fast_gradient_sign_method() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
@@ -49,96 +48,10 @@ class ModelToBeAttacked(BlackModel): | |||||
return result.asnumpy() | return result.asnumpy() | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_genetic_attack_on_mnist(): | def test_genetic_attack_on_mnist(): | ||||
""" | """ | ||||
Genetic-Attack test | Genetic-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) | |||||
# attacking | |||||
attack = GeneticAttack(model=model, pop_size=6, mutation_rate=0.05, | |||||
per_bounds=0.1, step_size=0.25, temp=0.1, | |||||
sparse=True) | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
start_time = time.clock() | |||||
success_list, adv_data, query_list = attack.generate( | |||||
np.concatenate(test_images), targeted_labels) | |||||
stop_time = time.clock() | |||||
LOGGER.info(TAG, 'success_list: %s', success_list) | |||||
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) | |||||
pred_logits_adv = model.predict(adv_data) | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_lables_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %g", | |||||
accuracy_adv) | |||||
test_labels_onehot = np.eye(10)[true_labels] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images), | |||||
test_labels_onehot, adv_data, | |||||
pred_logits_adv, targeted=True, | |||||
target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_genetic_attack_on_mnist_cpu(): | |||||
""" | |||||
Genetic-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -215,4 +128,6 @@ def test_genetic_attack_on_mnist_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_genetic_attack_on_mnist_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_genetic_attack_on_mnist() |
@@ -14,7 +14,6 @@ | |||||
import sys | import sys | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
@@ -68,90 +67,10 @@ def create_target_images(dataset, data_labels, target_labels): | |||||
return np.array(res) | return np.array(res) | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_hsja_mnist_attack(): | def test_hsja_mnist_attack(): | ||||
""" | """ | ||||
hsja-Attack test | hsja-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
net.set_train(False) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 5 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", | |||||
accuracy) | |||||
test_images = np.concatenate(test_images) | |||||
# attacking | |||||
norm = 'l2' | |||||
search = 'grid_search' | |||||
target = False | |||||
attack = HopSkipJumpAttack(model, constraint=norm, stepsize_search=search) | |||||
if target: | |||||
target_labels = random_target_labels(true_labels) | |||||
target_images = create_target_images(test_images, predict_labels, | |||||
target_labels) | |||||
attack.set_target_images(target_images) | |||||
success_list, adv_data, _ = attack.generate(test_images, target_labels) | |||||
else: | |||||
success_list, adv_data, _ = attack.generate(test_images, None) | |||||
adv_datas = [] | |||||
gts = [] | |||||
for success, adv, gt in zip(success_list, adv_data, true_labels): | |||||
if success: | |||||
adv_datas.append(adv) | |||||
gts.append(gt) | |||||
if gts: | |||||
adv_datas = np.concatenate(np.asarray(adv_datas), axis=0) | |||||
gts = np.asarray(gts) | |||||
pred_logits_adv = model.predict(adv_datas) | |||||
pred_lables_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_lables_adv, gts)) | |||||
mis_rate = (1 - accuracy_adv)*(len(adv_datas) / len(success_list)) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
mis_rate) | |||||
def test_hsja_mnist_attack_cpu(): | |||||
""" | |||||
hsja-Attack test | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -220,4 +139,6 @@ def test_hsja_mnist_attack_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_hsja_mnist_attack_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_hsja_mnist_attack() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Model | from mindspore import Model | ||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
@@ -38,94 +37,10 @@ LOGGER.set_level('INFO') | |||||
TAG = 'JSMA_Test' | TAG = 'JSMA_Test' | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_jsma_attack(): | def test_jsma_attack(): | ||||
""" | """ | ||||
JSMA-Attack test | JSMA-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) | |||||
# attacking | |||||
classes = 10 | |||||
attack = JSMAAttack(net, classes) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
targeted_labels, batch_size=32) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_lables_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %g", | |||||
accuracy_adv) | |||||
test_labels = np.eye(10)[np.concatenate(test_labels)] | |||||
attack_evaluate = AttackEvaluate( | |||||
np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
test_labels, adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv, targeted=True, target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time) / (batch_num*batch_size)) | |||||
def test_jsma_attack_cpu(): | |||||
""" | |||||
JSMA-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -200,4 +115,6 @@ def test_jsma_attack_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_jsma_attack_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_jsma_attack() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Model | from mindspore import Model | ||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
@@ -37,102 +36,10 @@ LOGGER.set_level('INFO') | |||||
TAG = 'LBFGS_Test' | TAG = 'LBFGS_Test' | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_lbfgs_attack(): | def test_lbfgs_attack(): | ||||
""" | |||||
LBFGS-Attack test | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size, sparse=False) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.argmax(np.concatenate(test_labels), axis=1) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
is_targeted = True | |||||
if is_targeted: | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)).astype(np.int32) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
else: | |||||
targeted_labels = true_labels.astype(np.int32) | |||||
targeted_labels = np.eye(10)[targeted_labels].astype(np.float32) | |||||
attack = LBFGS(net, is_targeted=is_targeted) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
targeted_labels, | |||||
batch_size=batch_size) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
accuracy_adv) | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
np.concatenate(test_labels), | |||||
adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv, | |||||
targeted=is_targeted, | |||||
target_label=np.argmax(targeted_labels, | |||||
axis=1)) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_lbfgs_attack_cpu(): | |||||
""" | """ | ||||
LBFGS-Attack test for CPU device. | LBFGS-Attack test for CPU device. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -214,4 +121,6 @@ def test_lbfgs_attack_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_lbfgs_attack_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_lbfgs_attack() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Model | from mindspore import Model | ||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
@@ -37,83 +36,8 @@ LOGGER = LogUtil.get_instance() | |||||
TAG = 'M_DI2_FGSM_Test' | TAG = 'M_DI2_FGSM_Test' | ||||
LOGGER.set_level('INFO') | LOGGER.set_level('INFO') | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_momentum_diverse_input_iterative_method(): | |||||
""" | |||||
M-DI2-FGSM Attack Test | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=False) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 32 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.argmax(np.concatenate(test_labels), axis=1) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
attack = MomentumDiverseInputIterativeMethod(net) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
np.concatenate(test_labels), batch_size=32) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
np.concatenate(test_labels), | |||||
adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_momentum_diverse_input_iterative_method_cpu(): | |||||
def test_momentum_diverse_input_iterative_method(): | |||||
""" | """ | ||||
M-DI2-FGSM Attack Test for CPU device. | M-DI2-FGSM Attack Test for CPU device. | ||||
""" | """ | ||||
@@ -186,4 +110,6 @@ def test_momentum_diverse_input_iterative_method_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_momentum_diverse_input_iterative_method_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_momentum_diverse_input_iterative_method() |
@@ -14,7 +14,6 @@ | |||||
import sys | import sys | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
@@ -78,98 +77,10 @@ def create_target_images(dataset, data_labels, target_labels): | |||||
return np.array(res) | return np.array(res) | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_nes_mnist_attack(): | def test_nes_mnist_attack(): | ||||
""" | """ | ||||
hsja-Attack test | hsja-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
net.set_train(False) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
# the number of batches of attacking samples | |||||
batch_num = 5 | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", | |||||
accuracy) | |||||
test_images = np.concatenate(test_images) | |||||
# attacking | |||||
scene = 'Query_Limit' | |||||
if scene == 'Query_Limit': | |||||
top_k = -1 | |||||
elif scene == 'Partial_Info': | |||||
top_k = 5 | |||||
elif scene == 'Label_Only': | |||||
top_k = 5 | |||||
success = 0 | |||||
queries_num = 0 | |||||
nes_instance = NES(model, scene, top_k=top_k) | |||||
test_length = 32 | |||||
advs = [] | |||||
for img_index in range(test_length): | |||||
# Initial image and class selection | |||||
initial_img = test_images[img_index] | |||||
orig_class = true_labels[img_index] | |||||
initial_img = [initial_img] | |||||
target_class = random_target_labels([orig_class], true_labels) | |||||
target_image = create_target_images(test_images, true_labels, | |||||
target_class) | |||||
nes_instance.set_target_images(target_image) | |||||
tag, adv, queries = nes_instance.generate(initial_img, target_class) | |||||
if tag[0]: | |||||
success += 1 | |||||
queries_num += queries[0] | |||||
advs.append(adv) | |||||
advs = np.reshape(advs, (len(advs), 1, 32, 32)) | |||||
adv_pred = np.argmax(model.predict(advs), axis=1) | |||||
adv_accuracy = np.mean(np.equal(adv_pred, true_labels[:test_length])) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
adv_accuracy) | |||||
def test_nes_mnist_attack_cpu(): | |||||
""" | |||||
hsja-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -246,4 +157,6 @@ def test_nes_mnist_attack_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_nes_mnist_attack_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_nes_mnist_attack() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Model | from mindspore import Model | ||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
@@ -37,88 +36,10 @@ LOGGER.set_level('INFO') | |||||
TAG = 'PGD_Test' | TAG = 'PGD_Test' | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_projected_gradient_descent_method(): | def test_projected_gradient_descent_method(): | ||||
""" | |||||
PGD-Attack test | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=False) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 32 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.argmax(np.concatenate(test_labels), axis=1) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
attack = ProjectedGradientDescent(net, eps=0.3) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
np.concatenate(test_labels), batch_size=32) | |||||
stop_time = time.clock() | |||||
np.save('./adv_data', adv_data) | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
np.concatenate(test_labels), | |||||
adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_projected_gradient_descent_method_cpu(): | |||||
""" | """ | ||||
PGD-Attack test for CPU device. | PGD-Attack test for CPU device. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -188,4 +109,6 @@ def test_projected_gradient_descent_method_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_projected_gradient_descent_method_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_projected_gradient_descent_method() |
@@ -14,7 +14,6 @@ | |||||
import sys | import sys | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
@@ -49,94 +48,10 @@ class ModelToBeAttacked(BlackModel): | |||||
return result.asnumpy() | return result.asnumpy() | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_pointwise_attack_on_mnist(): | def test_pointwise_attack_on_mnist(): | ||||
""" | """ | ||||
Salt-and-Pepper-Attack test | Salt-and-Pepper-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) | |||||
# attacking | |||||
is_target = False | |||||
attack = PointWiseAttack(model=model, is_targeted=is_target) | |||||
if is_target: | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
else: | |||||
targeted_labels = true_labels | |||||
success_list, adv_data, query_list = attack.generate( | |||||
np.concatenate(test_images), targeted_labels) | |||||
success_list = np.arange(success_list.shape[0])[success_list] | |||||
LOGGER.info(TAG, 'success_list: %s', success_list) | |||||
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) | |||||
adv_preds = [] | |||||
for ite_data in adv_data: | |||||
pred_logits_adv = model.predict(ite_data) | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
adv_preds.extend(pred_logits_adv) | |||||
accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %g", | |||||
accuracy_adv) | |||||
test_labels_onehot = np.eye(10)[true_labels] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images), | |||||
test_labels_onehot, adv_data, | |||||
adv_preds, targeted=is_target, | |||||
target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
def test_pointwise_attack_on_mnist_cpu(): | |||||
""" | |||||
Salt-and-Pepper-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -211,4 +126,6 @@ def test_pointwise_attack_on_mnist_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_pointwise_attack_on_mnist_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_pointwise_attack_on_mnist() |
@@ -15,7 +15,6 @@ import sys | |||||
import time | import time | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
@@ -49,89 +48,10 @@ class ModelToBeAttacked(BlackModel): | |||||
return result.asnumpy() | return result.asnumpy() | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_pso_attack_on_mnist(): | def test_pso_attack_on_mnist(): | ||||
""" | """ | ||||
PSO-Attack test | PSO-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
attack = PSOAttack(model, bounds=(0.0, 1.0), pm=0.5, sparse=True) | |||||
start_time = time.clock() | |||||
success_list, adv_data, query_list = attack.generate( | |||||
np.concatenate(test_images), np.concatenate(test_labels)) | |||||
stop_time = time.clock() | |||||
LOGGER.info(TAG, 'success_list: %s', success_list) | |||||
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) | |||||
pred_logits_adv = model.predict(adv_data) | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
accuracy_adv) | |||||
test_labels_onehot = np.eye(10)[np.concatenate(test_labels)] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images), | |||||
test_labels_onehot, adv_data, | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_pso_attack_on_mnist_cpu(): | |||||
""" | |||||
PSO-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -201,4 +121,6 @@ def test_pso_attack_on_mnist_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_pso_attack_on_mnist_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_pso_attack_on_mnist() |
@@ -14,7 +14,6 @@ | |||||
import sys | import sys | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
@@ -49,98 +48,10 @@ class ModelToBeAttacked(BlackModel): | |||||
return result.asnumpy() | return result.asnumpy() | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_salt_and_pepper_attack_on_mnist(): | def test_salt_and_pepper_attack_on_mnist(): | ||||
""" | """ | ||||
Salt-and-Pepper-Attack test | Salt-and-Pepper-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
LOGGER.debug(TAG, 'model input image shape is: {}'.format(np.array(test_images).shape)) | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) | |||||
# attacking | |||||
is_target = False | |||||
attack = SaltAndPepperNoiseAttack(model=model, | |||||
is_targeted=is_target, | |||||
sparse=True) | |||||
if is_target: | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
else: | |||||
targeted_labels = true_labels | |||||
LOGGER.debug(TAG, 'input shape is: {}'.format(np.concatenate(test_images).shape)) | |||||
success_list, adv_data, query_list = attack.generate( | |||||
np.concatenate(test_images), targeted_labels) | |||||
success_list = np.arange(success_list.shape[0])[success_list] | |||||
LOGGER.info(TAG, 'success_list: %s', success_list) | |||||
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) | |||||
adv_preds = [] | |||||
for ite_data in adv_data: | |||||
pred_logits_adv = model.predict(ite_data) | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
adv_preds.extend(pred_logits_adv) | |||||
accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %g", | |||||
accuracy_adv) | |||||
test_labels_onehot = np.eye(10)[true_labels] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images), | |||||
test_labels_onehot, adv_data, | |||||
adv_preds, targeted=is_target, | |||||
target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
def test_salt_and_pepper_attack_on_mnist_cpu(): | |||||
""" | |||||
Salt-and-Pepper-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -219,4 +130,6 @@ def test_salt_and_pepper_attack_on_mnist_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_salt_and_pepper_attack_on_mnist_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_salt_and_pepper_attack_on_mnist() |
@@ -12,11 +12,9 @@ | |||||
# See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
# limitations under the License. | # limitations under the License. | ||||
"""defense example using nad""" | """defense example using nad""" | ||||
import logging | |||||
import sys | import sys | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore import nn | from mindspore import nn | ||||
@@ -36,111 +34,10 @@ LOGGER = LogUtil.get_instance() | |||||
TAG = 'Nad_Example' | TAG = 'Nad_Example' | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_nad_method(): | def test_nad_method(): | ||||
""" | |||||
NAD-Defense test. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# 1. load trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False) | |||||
opt = nn.Momentum(net.trainable_params(), 0.01, 0.09) | |||||
nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt, | |||||
bounds=(0.0, 1.0), eps=0.3) | |||||
# 2. get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds_test = generate_mnist_dataset(data_list, batch_size=batch_size, | |||||
sparse=False) | |||||
inputs = [] | |||||
labels = [] | |||||
for data in ds_test.create_tuple_iterator(): | |||||
inputs.append(data[0].astype(np.float32)) | |||||
labels.append(data[1]) | |||||
inputs = np.concatenate(inputs) | |||||
labels = np.concatenate(labels) | |||||
# 3. get accuracy of test data on original model | |||||
net.set_train(False) | |||||
acc_list = [] | |||||
batchs = inputs.shape[0] // batch_size | |||||
for i in range(batchs): | |||||
batch_inputs = inputs[i*batch_size : (i + 1)*batch_size] | |||||
batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1) | |||||
logits = net(Tensor(batch_inputs)).asnumpy() | |||||
label_pred = np.argmax(logits, axis=1) | |||||
acc_list.append(np.mean(batch_labels == label_pred)) | |||||
LOGGER.debug(TAG, 'accuracy of TEST data on original model is : %s', | |||||
np.mean(acc_list)) | |||||
# 4. get adv of test data | |||||
attack = FastGradientSignMethod(net, eps=0.3) | |||||
adv_data = attack.batch_generate(inputs, labels) | |||||
LOGGER.debug(TAG, 'adv_data.shape is : %s', adv_data.shape) | |||||
# 5. get accuracy of adv data on original model | |||||
net.set_train(False) | |||||
acc_list = [] | |||||
batchs = adv_data.shape[0] // batch_size | |||||
for i in range(batchs): | |||||
batch_inputs = adv_data[i*batch_size : (i + 1)*batch_size] | |||||
batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1) | |||||
logits = net(Tensor(batch_inputs)).asnumpy() | |||||
label_pred = np.argmax(logits, axis=1) | |||||
acc_list.append(np.mean(batch_labels == label_pred)) | |||||
LOGGER.debug(TAG, 'accuracy of adv data on original model is : %s', | |||||
np.mean(acc_list)) | |||||
# 6. defense | |||||
net.set_train() | |||||
nad.batch_defense(inputs, labels, batch_size=32, epochs=10) | |||||
# 7. get accuracy of test data on defensed model | |||||
net.set_train(False) | |||||
acc_list = [] | |||||
batchs = inputs.shape[0] // batch_size | |||||
for i in range(batchs): | |||||
batch_inputs = inputs[i*batch_size : (i + 1)*batch_size] | |||||
batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1) | |||||
logits = net(Tensor(batch_inputs)).asnumpy() | |||||
label_pred = np.argmax(logits, axis=1) | |||||
acc_list.append(np.mean(batch_labels == label_pred)) | |||||
LOGGER.debug(TAG, 'accuracy of TEST data on defensed model is : %s', | |||||
np.mean(acc_list)) | |||||
# 8. get accuracy of adv data on defensed model | |||||
acc_list = [] | |||||
batchs = adv_data.shape[0] // batch_size | |||||
for i in range(batchs): | |||||
batch_inputs = adv_data[i*batch_size : (i + 1)*batch_size] | |||||
batch_labels = np.argmax(labels[i*batch_size : (i + 1)*batch_size], axis=1) | |||||
logits = net(Tensor(batch_inputs)).asnumpy() | |||||
label_pred = np.argmax(logits, axis=1) | |||||
acc_list.append(np.mean(batch_labels == label_pred)) | |||||
LOGGER.debug(TAG, 'accuracy of adv data on defensed model is : %s', | |||||
np.mean(acc_list)) | |||||
def test_nad_method_cpu(): | |||||
""" | """ | ||||
NAD-Defense test for CPU device. | NAD-Defense test for CPU device. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# 1. load trained network | # 1. load trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -231,5 +128,6 @@ def test_nad_method_cpu(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
LOGGER.set_level(logging.DEBUG) | |||||
test_nad_method_cpu() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
test_nad_method() |
@@ -40,7 +40,6 @@ from mindarmour.utils.logger import LogUtil | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
TAG = 'Defense_Evaluate_Example' | TAG = 'Defense_Evaluate_Example' | ||||
@@ -140,20 +139,18 @@ def test_black_defense(): | |||||
# get test data | # get test data | ||||
data_list = "./MNIST_unzip/test" | data_list = "./MNIST_unzip/test" | ||||
batch_size = 32 | batch_size = 32 | ||||
ds_test = generate_mnist_dataset(data_list, batch_size=batch_size, | |||||
sparse=False) | |||||
ds_test = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
inputs = [] | inputs = [] | ||||
labels = [] | labels = [] | ||||
for data in ds_test.create_tuple_iterator(): | for data in ds_test.create_tuple_iterator(): | ||||
inputs.append(data[0].astype(np.float32)) | inputs.append(data[0].astype(np.float32)) | ||||
labels.append(data[1]) | labels.append(data[1]) | ||||
inputs = np.concatenate(inputs).astype(np.float32) | inputs = np.concatenate(inputs).astype(np.float32) | ||||
labels = np.concatenate(labels).astype(np.float32) | |||||
labels_sparse = np.argmax(labels, axis=1) | |||||
labels = np.concatenate(labels).astype(np.int32) | |||||
target_label = np.random.randint(0, 10, size=labels_sparse.shape[0]) | |||||
for idx in range(labels_sparse.shape[0]): | |||||
while target_label[idx] == labels_sparse[idx]: | |||||
target_label = np.random.randint(0, 10, size=labels.shape[0]) | |||||
for idx in range(labels.shape[0]): | |||||
while target_label[idx] == labels[idx]: | |||||
target_label[idx] = np.random.randint(0, 10) | target_label[idx] = np.random.randint(0, 10) | ||||
target_label = np.eye(10)[target_label].astype(np.float32) | target_label = np.eye(10)[target_label].astype(np.float32) | ||||
@@ -167,23 +164,23 @@ def test_black_defense(): | |||||
wb_model = ModelToBeAttacked(wb_net) | wb_model = ModelToBeAttacked(wb_net) | ||||
# gen white-box adversarial examples of test data | # gen white-box adversarial examples of test data | ||||
wb_attack = FastGradientSignMethod(wb_net, eps=0.3) | |||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
wb_attack = FastGradientSignMethod(wb_net, eps=0.3, loss_fn=loss) | |||||
wb_adv_sample = wb_attack.generate(attacked_sample, | wb_adv_sample = wb_attack.generate(attacked_sample, | ||||
attacked_true_label) | attacked_true_label) | ||||
wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1) | wb_raw_preds = softmax(wb_model.predict(wb_adv_sample), axis=1) | ||||
accuracy_test = np.mean( | accuracy_test = np.mean( | ||||
np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1), | np.equal(np.argmax(wb_model.predict(attacked_sample), axis=1), | ||||
np.argmax(attacked_true_label, axis=1))) | |||||
attacked_true_label)) | |||||
LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s", | LOGGER.info(TAG, "prediction accuracy before white-box attack is : %s", | ||||
accuracy_test) | accuracy_test) | ||||
accuracy_adv = np.mean(np.equal(np.argmax(wb_raw_preds, axis=1), | accuracy_adv = np.mean(np.equal(np.argmax(wb_raw_preds, axis=1), | ||||
np.argmax(attacked_true_label, axis=1))) | |||||
attacked_true_label)) | |||||
LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s", | LOGGER.info(TAG, "prediction accuracy after white-box attack is : %s", | ||||
accuracy_adv) | accuracy_adv) | ||||
# improve the robustness of model with white-box adversarial examples | # improve the robustness of model with white-box adversarial examples | ||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=False) | |||||
opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09) | opt = nn.Momentum(wb_net.trainable_params(), 0.01, 0.09) | ||||
nad = NaturalAdversarialDefense(wb_net, loss_fn=loss, optimizer=opt, | nad = NaturalAdversarialDefense(wb_net, loss_fn=loss, optimizer=opt, | ||||
@@ -194,12 +191,12 @@ def test_black_defense(): | |||||
wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy() | wb_def_preds = wb_net(Tensor(wb_adv_sample)).asnumpy() | ||||
wb_def_preds = softmax(wb_def_preds, axis=1) | wb_def_preds = softmax(wb_def_preds, axis=1) | ||||
accuracy_def = np.mean(np.equal(np.argmax(wb_def_preds, axis=1), | accuracy_def = np.mean(np.equal(np.argmax(wb_def_preds, axis=1), | ||||
np.argmax(attacked_true_label, axis=1))) | |||||
attacked_true_label)) | |||||
LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def) | LOGGER.info(TAG, "prediction accuracy after defense is : %s", accuracy_def) | ||||
# calculate defense evaluation metrics for defense against white-box attack | # calculate defense evaluation metrics for defense against white-box attack | ||||
wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds, | wb_def_evaluate = DefenseEvaluate(wb_raw_preds, wb_def_preds, | ||||
np.argmax(attacked_true_label, axis=1)) | |||||
attacked_true_label) | |||||
LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack') | LOGGER.info(TAG, 'defense evaluation for white-box adversarial attack') | ||||
LOGGER.info(TAG, | LOGGER.info(TAG, | ||||
'classification accuracy variance (CAV) is : {:.2f}'.format( | 'classification accuracy variance (CAV) is : {:.2f}'.format( | ||||
@@ -232,7 +229,7 @@ def test_black_defense(): | |||||
per_bounds=0.1, step_size=0.25, temp=0.1, | per_bounds=0.1, step_size=0.25, temp=0.1, | ||||
sparse=False) | sparse=False) | ||||
attack_target_label = target_label[:attacked_size] | attack_target_label = target_label[:attacked_size] | ||||
true_label = labels_sparse[:attacked_size + benign_size] | |||||
true_label = labels[:attacked_size + benign_size] | |||||
# evaluate robustness of original model | # evaluate robustness of original model | ||||
# gen black-box adversarial examples of test data | # gen black-box adversarial examples of test data | ||||
for idx in range(attacked_size): | for idx in range(attacked_size): | ||||
@@ -323,4 +320,8 @@ def test_black_defense(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_black_defense() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
DEVICE = context.get_context("device_target") | |||||
if DEVICE in ("Ascend", "GPU"): | |||||
test_black_defense() |
@@ -14,7 +14,6 @@ | |||||
import sys | import sys | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
from mindspore import Model | from mindspore import Model | ||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
@@ -29,7 +28,6 @@ from mindarmour.attacks.black.pso_attack import PSOAttack | |||||
from mindarmour.detectors.black.similarity_detector import SimilarityDetector | from mindarmour.detectors.black.similarity_detector import SimilarityDetector | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
@@ -92,11 +90,6 @@ class EncoderNet(Cell): | |||||
return self._encode_dim | return self._encode_dim | ||||
@pytest.mark.level1 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_similarity_detector(): | def test_similarity_detector(): | ||||
""" | """ | ||||
Similarity Detector test. | Similarity Detector test. | ||||
@@ -178,4 +171,8 @@ def test_similarity_detector(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_similarity_detector() | |||||
# device_target can be "CPU", "GPU" or "Ascend" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
DEVICE = context.get_context("device_target") | |||||
if DEVICE in ("Ascend", "GPU"): | |||||
test_similarity_detector() |
@@ -31,12 +31,6 @@ TAG = "Lenet5_train" | |||||
def mnist_train(epoch_size, batch_size, lr, momentum): | def mnist_train(epoch_size, batch_size, lr, momentum): | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||||
enable_mem_reuse=False) | |||||
lr = lr | |||||
momentum = momentum | |||||
epoch_size = epoch_size | |||||
mnist_path = "./MNIST_unzip/" | mnist_path = "./MNIST_unzip/" | ||||
ds = generate_mnist_dataset(os.path.join(mnist_path, "train"), | ds = generate_mnist_dataset(os.path.join(mnist_path, "train"), | ||||
batch_size=batch_size, repeat_size=1) | batch_size=batch_size, repeat_size=1) | ||||
@@ -67,4 +61,6 @@ def mnist_train(epoch_size, batch_size, lr, momentum): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU", | |||||
enable_mem_reuse=False) | |||||
mnist_train(10, 32, 0.01, 0.9) | mnist_train(10, 32, 0.01, 0.9) |