Merge pull request !427 from 君君臣臣君/masterpull/428/head
| @@ -0,0 +1,119 @@ | |||
| # 人脸识别物理对抗攻击 | |||
| ## 描述 | |||
| 本项目是基于MindSpore框架对人脸识别模型的物理对抗攻击,通过生成对抗口罩,使人脸佩戴后实现有目标攻击和非目标攻击。 | |||
| ## 模型结构 | |||
| 采用华为MindSpore官方训练的FaceRecognition模型 | |||
| https://www.mindspore.cn/resources/hub/details?MindSpore/1.7/facerecognition_ms1mv2 | |||
| ## 环境要求 | |||
| mindspore>=1.7,硬件平台为GPU。 | |||
| ## 脚本说明 | |||
| ```markdown | |||
| ├── readme.md | |||
| ├── photos | |||
| │ ├── adv_input //对抗图像 | |||
| │ ├── input //输入图像 | |||
| │ └── target //目标图像 | |||
| ├── outputs //训练后的图像 | |||
| ├── adversarial_attack.py //训练脚本 | |||
| │── example_non_target_attack.py //无目标攻击训练 | |||
| │── example_target_attack.py //有目标攻击训练 | |||
| │── loss_design.py //训练优化设置 | |||
| └── test.py //评估攻击效果 | |||
| ``` | |||
| ## 模型调用 | |||
| 方法一: | |||
| ```python | |||
| #基于mindspore_hub库调用FaceRecognition模型 | |||
| import mindspore_hub as mshub | |||
| from mindspore import context | |||
| def get_model(): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU", device_id=0) | |||
| model = "mindspore/1.7/facerecognition_ms1mv2" | |||
| network = mshub.load(model) | |||
| network.set_train(False) | |||
| return network | |||
| ``` | |||
| 方法二: | |||
| ```text | |||
| 利用MindSpore代码仓中的https://gitee.com/mindspore/models/blob/master/research/cv/FaceRecognition/eval.py的get_model函数加载模型 | |||
| ``` | |||
| ## 训练过程 | |||
| 有目标攻击: | |||
| ```shell | |||
| cd face_adversarial_attack/ | |||
| python example_target_attack.py | |||
| ``` | |||
| 非目标攻击: | |||
| ```shell | |||
| cd face_adversarial_attack/ | |||
| python example_non_target_attack.py | |||
| ``` | |||
| ## 默认训练参数 | |||
| optimizer=adam, learning rate=0.01, weight_decay=0.0001, epoch=2000 | |||
| ## 评估过程 | |||
| 评估方法一: | |||
| ```shell | |||
| adversarial_attack.FaceAdversarialAttack.test_non_target_attack() | |||
| adversarial_attack.FaceAdversarialAttack.test_target_attack() | |||
| ``` | |||
| 评估方法二: | |||
| ```shell | |||
| cd face_adversarial_attack/ | |||
| python test.py | |||
| ``` | |||
| ## 实验结果 | |||
| 有目标攻击: | |||
| ```text | |||
| input_label: 60 | |||
| target_label: 345 | |||
| The confidence of the input image on the input label: 26.67 | |||
| The confidence of the input image on the target label: 0.95 | |||
| ================================ | |||
| adversarial_label: 345 | |||
| The confidence of the adversarial sample on the correct label: 1.82 | |||
| The confidence of the adversarial sample on the target label: 10.96 | |||
| input_label: 60, target_label: 345, adversarial_label: 345 | |||
| photos中是有目标攻击的实验结果 | |||
| ``` | |||
| 非目标攻击: | |||
| ```text | |||
| input_label: 60 | |||
| The confidence of the input image on the input label: 25.16 | |||
| ================================ | |||
| adversarial_label: 251 | |||
| The confidence of the adversarial sample on the correct label: 9.52 | |||
| The confidence of the adversarial sample on the adversarial label: 60.96 | |||
| input_label: 60, adversarial_label: 251 | |||
| ``` | |||
| @@ -0,0 +1,275 @@ | |||
| # Copyright 2022 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Train set""" | |||
| import os | |||
| import re | |||
| import numpy as np | |||
| import face_recognition as fr | |||
| import face_recognition_models as frm | |||
| import dlib | |||
| from PIL import Image, ImageDraw | |||
| import mindspore | |||
| import mindspore.dataset.vision.py_transforms as P | |||
| from mindspore.dataset.vision.py_transforms import ToPIL as ToPILImage | |||
| from mindspore.dataset.vision.py_transforms import ToTensor | |||
| from mindspore import Parameter, ops, nn, Tensor | |||
| from loss_design import MyTrainOneStepCell, MyWithLossCellTargetAttack, \ | |||
| MyWithLossCellNonTargetAttack, FaceLossTargetAttack, FaceLossNoTargetAttack | |||
| class FaceAdversarialAttack(): | |||
| """ | |||
| Class used to create adversarial facial recognition attacks. | |||
| Args: | |||
| input_img (numpy.ndarray): The input image. | |||
| target_img (numpy.ndarray): The target image. | |||
| seed (int): optional Sets custom seed for reproducibility. Default is generated randomly. | |||
| net (mindspore.Model): face recognition model. | |||
| """ | |||
| def __init__(self, input_img, target_img, net, seed=None): | |||
| if seed is not None: | |||
| np.random.seed(seed) | |||
| self.mean = Tensor([0.485, 0.456, 0.406]) | |||
| self.std = Tensor([0.229, 0.224, 0.225]) | |||
| self.expand_dims = mindspore.ops.ExpandDims() | |||
| self.imageize = ToPILImage() | |||
| self.tensorize = ToTensor() | |||
| self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
| self.resnet = net | |||
| self.input_tensor = Tensor(self.normalize(self.tensorize(input_img))) | |||
| self.target_tensor = Tensor(self.normalize(self.tensorize(target_img))) | |||
| self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
| self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0)) | |||
| self.adversarial_emb = None | |||
| self.mask_tensor = create_mask(input_img) | |||
| self.ref = self.mask_tensor | |||
| self.pm = Parameter(self.mask_tensor) | |||
| self.opt = nn.Adam([self.pm], learning_rate=0.01, weight_decay=0.0001) | |||
| def train(self, attack_method): | |||
| """ | |||
| Optimized adversarial image. | |||
| Args: | |||
| attack_method (String) : Including target attack and non_target attack. | |||
| Returns: | |||
| Tensor, adversarial image. | |||
| Tensor, mask image. | |||
| """ | |||
| if attack_method == "non_target_attack": | |||
| loss = FaceLossNoTargetAttack() | |||
| net_with_criterion = MyWithLossCellNonTargetAttack(self.resnet, loss, self.input_tensor) | |||
| if attack_method == "target_attack": | |||
| loss = FaceLossTargetAttack(self.target_emb) | |||
| net_with_criterion = MyWithLossCellTargetAttack(self.resnet, loss, self.input_tensor) | |||
| train_net = MyTrainOneStepCell(net_with_criterion, self.opt) | |||
| for i in range(2000): | |||
| self.mask_tensor = Tensor(self.pm) | |||
| loss = train_net(self.mask_tensor) | |||
| print("epoch %d ,loss: %f \n " % (i, loss.asnumpy().item())) | |||
| self.mask_tensor = ops.clip_by_value( | |||
| self.mask_tensor, Tensor(0, mindspore.float32), Tensor(1, mindspore.float32)) | |||
| adversarial_tensor = apply( | |||
| self.input_tensor, | |||
| (self.mask_tensor - self.mean[:, None, None]) / self.std[:, None, None], | |||
| self.ref) | |||
| adversarial_tensor = self._reverse_norm(adversarial_tensor) | |||
| processed_input_tensor = self._reverse_norm(self.input_tensor) | |||
| processed_target_tensor = self._reverse_norm(self.target_tensor) | |||
| return { | |||
| "adversarial_tensor": adversarial_tensor, | |||
| "mask_tensor": self.mask_tensor, | |||
| "processed_input_tensor": processed_input_tensor, | |||
| "processed_target_tensor": processed_target_tensor | |||
| } | |||
| def test_target_attack(self): | |||
| """ | |||
| The model is used to test the recognition ability of adversarial images under target attack. | |||
| """ | |||
| adversarial_tensor = apply( | |||
| self.input_tensor, | |||
| (self.mask_tensor - self.mean[:, None, None]) / self.std[:, None, None], | |||
| self.ref) | |||
| self.adversarial_emb = self.resnet(self.expand_dims(adversarial_tensor, 0)) | |||
| self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
| self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0)) | |||
| adversarial_index = np.argmax(self.adversarial_emb.asnumpy()) | |||
| target_index = np.argmax(self.target_emb.asnumpy()) | |||
| input_index = np.argmax(self.input_emb.asnumpy()) | |||
| print("input_label:", input_index) | |||
| print("target_label:", target_index) | |||
| print("The confidence of the input image on the input label:", self.input_emb.asnumpy()[0][input_index]) | |||
| print("The confidence of the input image on the target label:", self.input_emb.asnumpy()[0][target_index]) | |||
| print("================================") | |||
| print("adversarial_label:", adversarial_index) | |||
| print("The confidence of the adversarial sample on the correct label:", | |||
| self.adversarial_emb.asnumpy()[0][input_index]) | |||
| print("The confidence of the adversarial sample on the target label:", | |||
| self.adversarial_emb.asnumpy()[0][target_index]) | |||
| print("input_label: %d, target_label: %d, adversarial_label: %d" | |||
| % (input_index, target_index, adversarial_index)) | |||
| def test_non_target_attack(self): | |||
| """ | |||
| The model is used to test the recognition ability of adversarial images under non_target attack. | |||
| """ | |||
| adversarial_tensor = apply( | |||
| self.input_tensor, | |||
| (self.mask_tensor - self.mean[:, None, None]) / self.std[:, None, None], | |||
| self.ref) | |||
| self.adversarial_emb = self.resnet(self.expand_dims(adversarial_tensor, 0)) | |||
| self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
| adversarial_index = np.argmax(self.adversarial_emb.asnumpy()) | |||
| input_index = np.argmax(self.input_emb.asnumpy()) | |||
| print("input_label:", input_index) | |||
| print("The confidence of the input image on the input label:", self.input_emb.asnumpy()[0][input_index]) | |||
| print("================================") | |||
| print("adversarial_label:", adversarial_index) | |||
| print("The confidence of the adversarial sample on the correct label:", | |||
| self.adversarial_emb.asnumpy()[0][input_index]) | |||
| print("The confidence of the adversarial sample on the adversarial label:", | |||
| self.adversarial_emb.asnumpy()[0][adversarial_index]) | |||
| print( | |||
| "input_label: %d, adversarial_label: %d" % (input_index, adversarial_index)) | |||
| def _reverse_norm(self, image_tensor): | |||
| """ | |||
| Reverses normalization for a given image_tensor. | |||
| Args: | |||
| image_tensor (Tensor): Tensor. | |||
| Returns: | |||
| Tensor, image. | |||
| """ | |||
| tensor = image_tensor * self.std[:, None, None] + self.mean[:, None, None] | |||
| return tensor | |||
| def apply(image_tensor, mask_tensor, reference_tensor): | |||
| """ | |||
| Apply a mask over an image. | |||
| Args: | |||
| image_tensor (Tensor): Canvas to be used to apply mask on. | |||
| mask_tensor (Tensor): Mask to apply over the image. | |||
| reference_tensor (Tensor): Used to reference mask boundaries | |||
| Returns: | |||
| Tensor, image. | |||
| """ | |||
| tensor = mindspore.numpy.where((reference_tensor == 0), image_tensor, mask_tensor) | |||
| return tensor | |||
| def create_mask(face_image): | |||
| """ | |||
| Create mask image. | |||
| Args: | |||
| face_image (PIL.Image): image of a detected face. | |||
| Returns: | |||
| mask_tensor : a mask image. | |||
| """ | |||
| mask = Image.new('RGB', face_image.size, color=(0, 0, 0)) | |||
| d = ImageDraw.Draw(mask) | |||
| landmarks = fr.face_landmarks(np.array(face_image)) | |||
| area = [landmark | |||
| for landmark in landmarks[0]['chin'] | |||
| if landmark[1] > max(landmarks[0]['nose_tip'])[1]] | |||
| area.append(landmarks[0]['nose_bridge'][1]) | |||
| d.polygon(area, fill=(255, 255, 255)) | |||
| mask = np.array(mask) | |||
| mask = mask.astype(np.float32) | |||
| for i in range(mask.shape[0]): | |||
| for j in range(mask.shape[1]): | |||
| for k in range(mask.shape[2]): | |||
| if mask[i][j][k] == 255.: | |||
| mask[i][j][k] = 0.5 | |||
| else: | |||
| mask[i][j][k] = 0 | |||
| mask_tensor = Tensor(mask) | |||
| mask_tensor = mask_tensor.swapaxes(0, 2).swapaxes(1, 2) | |||
| mask_tensor.requires_grad = True | |||
| return mask_tensor | |||
| def detect_face(image): | |||
| """ | |||
| Face detection and alignment process using dlib library. | |||
| Args: | |||
| image (numpy.ndarray): image file location. | |||
| Returns: | |||
| face_image : Resized face image. | |||
| """ | |||
| dlib_detector = dlib.get_frontal_face_detector() | |||
| dlib_shape_predictor = dlib.shape_predictor(frm.pose_predictor_model_location()) | |||
| dlib_image = dlib.load_rgb_image(image) | |||
| detections = dlib_detector(dlib_image, 1) | |||
| dlib_faces = dlib.full_object_detections() | |||
| for det in detections: | |||
| dlib_faces.append(dlib_shape_predictor(dlib_image, det)) | |||
| face_image = Image.fromarray(dlib.get_face_chip(dlib_image, dlib_faces[0], size=112)) | |||
| return face_image | |||
| def load_data(data): | |||
| """ | |||
| An auxiliary function that loads image data. | |||
| Args: | |||
| data (String): The path to the given data. | |||
| Returns: | |||
| list : Resize list of face images. | |||
| """ | |||
| image_files = [f for f in os.listdir(data) if re.search(r'.*\.(jpe?g|png)', f)] | |||
| image_files_locs = [os.path.join(data, f) for f in image_files] | |||
| image_list = [] | |||
| for img in image_files_locs: | |||
| image_list.append(detect_face(img)) | |||
| return image_list | |||
| @@ -0,0 +1,45 @@ | |||
| # Copyright 2022 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """non target attack""" | |||
| import numpy as np | |||
| import matplotlib.image as mp | |||
| from mindspore import context | |||
| import adversarial_attack | |||
| from FaceRecognition.eval import get_model | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| if __name__ == '__main__': | |||
| inputs = adversarial_attack.load_data('photos/input/') | |||
| targets = adversarial_attack.load_data('photos/target/') | |||
| net = get_model() | |||
| adversarial = adversarial_attack.FaceAdversarialAttack(inputs[0], targets[0], net) | |||
| ATTACK_METHOD = "non_target_attack" | |||
| tensor_dict = adversarial.train(attack_method=ATTACK_METHOD) | |||
| mp.imsave('./outputs/adversarial_example.jpg', | |||
| np.transpose(tensor_dict.get("adversarial_tensor").asnumpy(), (1, 2, 0))) | |||
| mp.imsave('./outputs/mask.jpg', | |||
| np.transpose(tensor_dict.get("mask_tensor").asnumpy(), (1, 2, 0))) | |||
| mp.imsave('./outputs/input_image.jpg', | |||
| np.transpose(tensor_dict.get("processed_input_tensor").asnumpy(), (1, 2, 0))) | |||
| mp.imsave('./outputs/target_image.jpg', | |||
| np.transpose(tensor_dict.get("processed_target_tensor").asnumpy(), (1, 2, 0))) | |||
| adversarial.test_non_target_attack() | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2022 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """target attack""" | |||
| import numpy as np | |||
| import matplotlib.image as mp | |||
| from mindspore import context | |||
| import adversarial_attack | |||
| from FaceRecognition.eval import get_model | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| if __name__ == '__main__': | |||
| inputs = adversarial_attack.load_data('photos/input/') | |||
| targets = adversarial_attack.load_data('photos/target/') | |||
| net = get_model() | |||
| adversarial = adversarial_attack.FaceAdversarialAttack(inputs[0], targets[0], net) | |||
| ATTACK_METHOD = "target_attack" | |||
| tensor_dict = adversarial.train(attack_method=ATTACK_METHOD) | |||
| mp.imsave('./outputs/adversarial_example.jpg', | |||
| np.transpose(tensor_dict.get("adversarial_tensor").asnumpy(), (1, 2, 0))) | |||
| mp.imsave('./outputs/mask.jpg', | |||
| np.transpose(tensor_dict.get("mask_tensor").asnumpy(), (1, 2, 0))) | |||
| mp.imsave('./outputs/input_image.jpg', | |||
| np.transpose(tensor_dict.get("processed_input_tensor").asnumpy(), (1, 2, 0))) | |||
| mp.imsave('./outputs/target_image.jpg', | |||
| np.transpose(tensor_dict.get("processed_target_tensor").asnumpy(), (1, 2, 0))) | |||
| adversarial.test_target_attack() | |||
| @@ -0,0 +1,154 @@ | |||
| # Copyright 2022 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """optimization Settings""" | |||
| import mindspore | |||
| from mindspore import ops, nn, Tensor | |||
| from mindspore.dataset.vision.py_transforms import ToTensor | |||
| import mindspore.dataset.vision.py_transforms as P | |||
| class MyTrainOneStepCell(nn.TrainOneStepCell): | |||
| """ | |||
| Encapsulation class of network training. | |||
| Append an optimizer to the training network after that the construct | |||
| function can be called to create the backward graph. | |||
| Args: | |||
| network (Cell): The training network. Note that loss function should have been added. | |||
| optimizer (Optimizer): Optimizer for updating the weights. | |||
| sens (Number): The adjust parameter. Default: 1.0. | |||
| """ | |||
| def __init__(self, network, optimizer, sens=1.0): | |||
| super(MyTrainOneStepCell, self).__init__(network, optimizer, sens) | |||
| self.grad = ops.composite.GradOperation(get_all=True, sens_param=False) | |||
| def construct(self, *inputs): | |||
| """Defines the computation performed.""" | |||
| loss = self.network(*inputs) | |||
| grads = self.grad(self.network)(*inputs) | |||
| self.optimizer(grads) | |||
| return loss | |||
| class MyWithLossCellTargetAttack(nn.Cell): | |||
| """The loss function defined by the target attack""" | |||
| def __init__(self, net, loss_fn, input_tensor): | |||
| super(MyWithLossCellTargetAttack, self).__init__(auto_prefix=False) | |||
| self.net = net | |||
| self._loss_fn = loss_fn | |||
| self.std = Tensor([0.229, 0.224, 0.225]) | |||
| self.mean = Tensor([0.485, 0.456, 0.406]) | |||
| self.expand_dims = mindspore.ops.ExpandDims() | |||
| self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
| self.tensorize = ToTensor() | |||
| self.input_tensor = input_tensor | |||
| self.input_emb = self.net(self.expand_dims(self.input_tensor, 0)) | |||
| @property | |||
| def backbone_network(self): | |||
| return self.net | |||
| def construct(self, mask_tensor): | |||
| ref = mask_tensor | |||
| adversarial_tensor = mindspore.numpy.where( | |||
| (ref == 0), | |||
| self.input_tensor, | |||
| (mask_tensor - self.mean[:, None, None]) / self.std[:, None, None]) | |||
| adversarial_emb = self.net(self.expand_dims(adversarial_tensor, 0)) | |||
| loss = self._loss_fn(adversarial_emb) | |||
| return loss | |||
| class MyWithLossCellNonTargetAttack(nn.Cell): | |||
| """The loss function defined by the non target attack""" | |||
| def __init__(self, net, loss_fn, input_tensor): | |||
| super(MyWithLossCellNonTargetAttack, self).__init__(auto_prefix=False) | |||
| self.net = net | |||
| self._loss_fn = loss_fn | |||
| self.std = Tensor([0.229, 0.224, 0.225]) | |||
| self.mean = Tensor([0.485, 0.456, 0.406]) | |||
| self.expand_dims = mindspore.ops.ExpandDims() | |||
| self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
| self.tensorize = ToTensor() | |||
| self.input_tensor = input_tensor | |||
| self.input_emb = self.net(self.expand_dims(self.input_tensor, 0)) | |||
| @property | |||
| def backbone_network(self): | |||
| return self.net | |||
| def construct(self, mask_tensor): | |||
| ref = mask_tensor | |||
| adversarial_tensor = mindspore.numpy.where( | |||
| (ref == 0), | |||
| self.input_tensor, | |||
| (mask_tensor - self.mean[:, None, None]) / self.std[:, None, None]) | |||
| adversarial_emb = self.net(self.expand_dims(adversarial_tensor, 0)) | |||
| loss = self._loss_fn(adversarial_emb, self.input_emb) | |||
| return loss | |||
| class FaceLossTargetAttack(nn.Cell): | |||
| """The loss function of the target attack""" | |||
| def __init__(self, target_emb): | |||
| super(FaceLossTargetAttack, self).__init__() | |||
| self.uniformreal = ops.UniformReal(seed=2) | |||
| self.sum = ops.ReduceSum(keep_dims=False) | |||
| self.norm = nn.Norm(keep_dims=True) | |||
| self.zeroslike = ops.ZerosLike() | |||
| self.concat_op1 = ops.Concat(1) | |||
| self.concat_op2 = ops.Concat(2) | |||
| self.pow = ops.Pow() | |||
| self.reduce_sum = ops.operations.ReduceSum() | |||
| self.target_emb = target_emb | |||
| self.abs = ops.Abs() | |||
| self.reduce_mean = ops.ReduceMean() | |||
| def construct(self, adversarial_emb): | |||
| prod_sum = self.reduce_sum(adversarial_emb * self.target_emb, (1,)) | |||
| square1 = self.reduce_sum(ops.functional.square(adversarial_emb), (1,)) | |||
| square2 = self.reduce_sum(ops.functional.square(self.target_emb), (1,)) | |||
| denom = ops.functional.sqrt(square1) * ops.functional.sqrt(square2) | |||
| loss = -(prod_sum / denom) | |||
| return loss | |||
| class FaceLossNoTargetAttack(nn.Cell): | |||
| """The loss function of the non-target attack""" | |||
| def __init__(self): | |||
| """Initialization""" | |||
| super(FaceLossNoTargetAttack, self).__init__() | |||
| self.uniformreal = ops.UniformReal(seed=2) | |||
| self.sum = ops.ReduceSum(keep_dims=False) | |||
| self.norm = nn.Norm(keep_dims=True) | |||
| self.zeroslike = ops.ZerosLike() | |||
| self.concat_op1 = ops.Concat(1) | |||
| self.concat_op2 = ops.Concat(2) | |||
| self.pow = ops.Pow() | |||
| self.reduce_sum = ops.operations.ReduceSum() | |||
| self.abs = ops.Abs() | |||
| self.reduce_mean = ops.ReduceMean() | |||
| def construct(self, adversarial_emb, input_emb): | |||
| prod_sum = self.reduce_sum(adversarial_emb * input_emb, (1,)) | |||
| square1 = self.reduce_sum(ops.functional.square(adversarial_emb), (1,)) | |||
| square2 = self.reduce_sum(ops.functional.square(input_emb), (1,)) | |||
| denom = ops.functional.sqrt(square1) * ops.functional.sqrt(square2) | |||
| loss = prod_sum / denom | |||
| return loss | |||
| @@ -0,0 +1,59 @@ | |||
| # Copyright 2022 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """test""" | |||
| import numpy as np | |||
| from mindspore import context, Tensor | |||
| import mindspore | |||
| from mindspore.dataset.vision.py_transforms import ToTensor | |||
| import mindspore.dataset.vision.py_transforms as P | |||
| from FaceRecognition.eval import get_model | |||
| import adversarial_attack | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| if __name__ == '__main__': | |||
| image = adversarial_attack.load_data('photos/adv_input/') | |||
| inputs = adversarial_attack.load_data('photos/input/') | |||
| targets = adversarial_attack.load_data('photos/target/') | |||
| tensorize = ToTensor() | |||
| normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
| expand_dims = mindspore.ops.ExpandDims() | |||
| mean = Tensor([0.485, 0.456, 0.406]) | |||
| std = Tensor([0.229, 0.224, 0.225]) | |||
| resnet = get_model() | |||
| adv = Tensor(normalize(tensorize(image[0]))) | |||
| input_tensor = Tensor(normalize(tensorize(inputs[0]))) | |||
| target_tensor = Tensor(normalize(tensorize(targets[0]))) | |||
| adversarial_emb = resnet(expand_dims(adv, 0)) | |||
| input_emb = resnet(expand_dims(input_tensor, 0)) | |||
| target_emb = resnet(expand_dims(target_tensor, 0)) | |||
| adversarial_index = np.argmax(adversarial_emb.asnumpy()) | |||
| target_index = np.argmax(target_emb.asnumpy()) | |||
| input_index = np.argmax(input_emb.asnumpy()) | |||
| print("input_label:", input_index) | |||
| print("The confidence of the input image on the input label:", input_emb.asnumpy()[0][input_index]) | |||
| print("================================") | |||
| print("adversarial_label:", adversarial_index) | |||
| print("The confidence of the adversarial sample on the correct label:", adversarial_emb.asnumpy()[0][input_index]) | |||
| print("The confidence of the adversarial sample on the adversarial label:", | |||
| adversarial_emb.asnumpy()[0][adversarial_index]) | |||
| print("input_label:%d, adversarial_label:%d" % (input_index, adversarial_index)) | |||