Merge pull request !427 from 君君臣臣君/masterpull/428/head
@@ -0,0 +1,119 @@ | |||
# 人脸识别物理对抗攻击 | |||
## 描述 | |||
本项目是基于MindSpore框架对人脸识别模型的物理对抗攻击,通过生成对抗口罩,使人脸佩戴后实现有目标攻击和非目标攻击。 | |||
## 模型结构 | |||
采用华为MindSpore官方训练的FaceRecognition模型 | |||
https://www.mindspore.cn/resources/hub/details?MindSpore/1.7/facerecognition_ms1mv2 | |||
## 环境要求 | |||
mindspore>=1.7,硬件平台为GPU。 | |||
## 脚本说明 | |||
```markdown | |||
├── readme.md | |||
├── photos | |||
│ ├── adv_input //对抗图像 | |||
│ ├── input //输入图像 | |||
│ └── target //目标图像 | |||
├── outputs //训练后的图像 | |||
├── adversarial_attack.py //训练脚本 | |||
│── example_non_target_attack.py //无目标攻击训练 | |||
│── example_target_attack.py //有目标攻击训练 | |||
│── loss_design.py //训练优化设置 | |||
└── test.py //评估攻击效果 | |||
``` | |||
## 模型调用 | |||
方法一: | |||
```python | |||
#基于mindspore_hub库调用FaceRecognition模型 | |||
import mindspore_hub as mshub | |||
from mindspore import context | |||
def get_model(): | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", device_id=0) | |||
model = "mindspore/1.7/facerecognition_ms1mv2" | |||
network = mshub.load(model) | |||
network.set_train(False) | |||
return network | |||
``` | |||
方法二: | |||
```text | |||
利用MindSpore代码仓中的https://gitee.com/mindspore/models/blob/master/research/cv/FaceRecognition/eval.py的get_model函数加载模型 | |||
``` | |||
## 训练过程 | |||
有目标攻击: | |||
```shell | |||
cd face_adversarial_attack/ | |||
python example_target_attack.py | |||
``` | |||
非目标攻击: | |||
```shell | |||
cd face_adversarial_attack/ | |||
python example_non_target_attack.py | |||
``` | |||
## 默认训练参数 | |||
optimizer=adam, learning rate=0.01, weight_decay=0.0001, epoch=2000 | |||
## 评估过程 | |||
评估方法一: | |||
```shell | |||
adversarial_attack.FaceAdversarialAttack.test_non_target_attack() | |||
adversarial_attack.FaceAdversarialAttack.test_target_attack() | |||
``` | |||
评估方法二: | |||
```shell | |||
cd face_adversarial_attack/ | |||
python test.py | |||
``` | |||
## 实验结果 | |||
有目标攻击: | |||
```text | |||
input_label: 60 | |||
target_label: 345 | |||
The confidence of the input image on the input label: 26.67 | |||
The confidence of the input image on the target label: 0.95 | |||
================================ | |||
adversarial_label: 345 | |||
The confidence of the adversarial sample on the correct label: 1.82 | |||
The confidence of the adversarial sample on the target label: 10.96 | |||
input_label: 60, target_label: 345, adversarial_label: 345 | |||
photos中是有目标攻击的实验结果 | |||
``` | |||
非目标攻击: | |||
```text | |||
input_label: 60 | |||
The confidence of the input image on the input label: 25.16 | |||
================================ | |||
adversarial_label: 251 | |||
The confidence of the adversarial sample on the correct label: 9.52 | |||
The confidence of the adversarial sample on the adversarial label: 60.96 | |||
input_label: 60, adversarial_label: 251 | |||
``` |
@@ -0,0 +1,275 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Train set""" | |||
import os | |||
import re | |||
import numpy as np | |||
import face_recognition as fr | |||
import face_recognition_models as frm | |||
import dlib | |||
from PIL import Image, ImageDraw | |||
import mindspore | |||
import mindspore.dataset.vision.py_transforms as P | |||
from mindspore.dataset.vision.py_transforms import ToPIL as ToPILImage | |||
from mindspore.dataset.vision.py_transforms import ToTensor | |||
from mindspore import Parameter, ops, nn, Tensor | |||
from loss_design import MyTrainOneStepCell, MyWithLossCellTargetAttack, \ | |||
MyWithLossCellNonTargetAttack, FaceLossTargetAttack, FaceLossNoTargetAttack | |||
class FaceAdversarialAttack(): | |||
""" | |||
Class used to create adversarial facial recognition attacks. | |||
Args: | |||
input_img (numpy.ndarray): The input image. | |||
target_img (numpy.ndarray): The target image. | |||
seed (int): optional Sets custom seed for reproducibility. Default is generated randomly. | |||
net (mindspore.Model): face recognition model. | |||
""" | |||
def __init__(self, input_img, target_img, net, seed=None): | |||
if seed is not None: | |||
np.random.seed(seed) | |||
self.mean = Tensor([0.485, 0.456, 0.406]) | |||
self.std = Tensor([0.229, 0.224, 0.225]) | |||
self.expand_dims = mindspore.ops.ExpandDims() | |||
self.imageize = ToPILImage() | |||
self.tensorize = ToTensor() | |||
self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
self.resnet = net | |||
self.input_tensor = Tensor(self.normalize(self.tensorize(input_img))) | |||
self.target_tensor = Tensor(self.normalize(self.tensorize(target_img))) | |||
self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0)) | |||
self.adversarial_emb = None | |||
self.mask_tensor = create_mask(input_img) | |||
self.ref = self.mask_tensor | |||
self.pm = Parameter(self.mask_tensor) | |||
self.opt = nn.Adam([self.pm], learning_rate=0.01, weight_decay=0.0001) | |||
def train(self, attack_method): | |||
""" | |||
Optimized adversarial image. | |||
Args: | |||
attack_method (String) : Including target attack and non_target attack. | |||
Returns: | |||
Tensor, adversarial image. | |||
Tensor, mask image. | |||
""" | |||
if attack_method == "non_target_attack": | |||
loss = FaceLossNoTargetAttack() | |||
net_with_criterion = MyWithLossCellNonTargetAttack(self.resnet, loss, self.input_tensor) | |||
if attack_method == "target_attack": | |||
loss = FaceLossTargetAttack(self.target_emb) | |||
net_with_criterion = MyWithLossCellTargetAttack(self.resnet, loss, self.input_tensor) | |||
train_net = MyTrainOneStepCell(net_with_criterion, self.opt) | |||
for i in range(2000): | |||
self.mask_tensor = Tensor(self.pm) | |||
loss = train_net(self.mask_tensor) | |||
print("epoch %d ,loss: %f \n " % (i, loss.asnumpy().item())) | |||
self.mask_tensor = ops.clip_by_value( | |||
self.mask_tensor, Tensor(0, mindspore.float32), Tensor(1, mindspore.float32)) | |||
adversarial_tensor = apply( | |||
self.input_tensor, | |||
(self.mask_tensor - self.mean[:, None, None]) / self.std[:, None, None], | |||
self.ref) | |||
adversarial_tensor = self._reverse_norm(adversarial_tensor) | |||
processed_input_tensor = self._reverse_norm(self.input_tensor) | |||
processed_target_tensor = self._reverse_norm(self.target_tensor) | |||
return { | |||
"adversarial_tensor": adversarial_tensor, | |||
"mask_tensor": self.mask_tensor, | |||
"processed_input_tensor": processed_input_tensor, | |||
"processed_target_tensor": processed_target_tensor | |||
} | |||
def test_target_attack(self): | |||
""" | |||
The model is used to test the recognition ability of adversarial images under target attack. | |||
""" | |||
adversarial_tensor = apply( | |||
self.input_tensor, | |||
(self.mask_tensor - self.mean[:, None, None]) / self.std[:, None, None], | |||
self.ref) | |||
self.adversarial_emb = self.resnet(self.expand_dims(adversarial_tensor, 0)) | |||
self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
self.target_emb = self.resnet(self.expand_dims(self.target_tensor, 0)) | |||
adversarial_index = np.argmax(self.adversarial_emb.asnumpy()) | |||
target_index = np.argmax(self.target_emb.asnumpy()) | |||
input_index = np.argmax(self.input_emb.asnumpy()) | |||
print("input_label:", input_index) | |||
print("target_label:", target_index) | |||
print("The confidence of the input image on the input label:", self.input_emb.asnumpy()[0][input_index]) | |||
print("The confidence of the input image on the target label:", self.input_emb.asnumpy()[0][target_index]) | |||
print("================================") | |||
print("adversarial_label:", adversarial_index) | |||
print("The confidence of the adversarial sample on the correct label:", | |||
self.adversarial_emb.asnumpy()[0][input_index]) | |||
print("The confidence of the adversarial sample on the target label:", | |||
self.adversarial_emb.asnumpy()[0][target_index]) | |||
print("input_label: %d, target_label: %d, adversarial_label: %d" | |||
% (input_index, target_index, adversarial_index)) | |||
def test_non_target_attack(self): | |||
""" | |||
The model is used to test the recognition ability of adversarial images under non_target attack. | |||
""" | |||
adversarial_tensor = apply( | |||
self.input_tensor, | |||
(self.mask_tensor - self.mean[:, None, None]) / self.std[:, None, None], | |||
self.ref) | |||
self.adversarial_emb = self.resnet(self.expand_dims(adversarial_tensor, 0)) | |||
self.input_emb = self.resnet(self.expand_dims(self.input_tensor, 0)) | |||
adversarial_index = np.argmax(self.adversarial_emb.asnumpy()) | |||
input_index = np.argmax(self.input_emb.asnumpy()) | |||
print("input_label:", input_index) | |||
print("The confidence of the input image on the input label:", self.input_emb.asnumpy()[0][input_index]) | |||
print("================================") | |||
print("adversarial_label:", adversarial_index) | |||
print("The confidence of the adversarial sample on the correct label:", | |||
self.adversarial_emb.asnumpy()[0][input_index]) | |||
print("The confidence of the adversarial sample on the adversarial label:", | |||
self.adversarial_emb.asnumpy()[0][adversarial_index]) | |||
print( | |||
"input_label: %d, adversarial_label: %d" % (input_index, adversarial_index)) | |||
def _reverse_norm(self, image_tensor): | |||
""" | |||
Reverses normalization for a given image_tensor. | |||
Args: | |||
image_tensor (Tensor): Tensor. | |||
Returns: | |||
Tensor, image. | |||
""" | |||
tensor = image_tensor * self.std[:, None, None] + self.mean[:, None, None] | |||
return tensor | |||
def apply(image_tensor, mask_tensor, reference_tensor): | |||
""" | |||
Apply a mask over an image. | |||
Args: | |||
image_tensor (Tensor): Canvas to be used to apply mask on. | |||
mask_tensor (Tensor): Mask to apply over the image. | |||
reference_tensor (Tensor): Used to reference mask boundaries | |||
Returns: | |||
Tensor, image. | |||
""" | |||
tensor = mindspore.numpy.where((reference_tensor == 0), image_tensor, mask_tensor) | |||
return tensor | |||
def create_mask(face_image): | |||
""" | |||
Create mask image. | |||
Args: | |||
face_image (PIL.Image): image of a detected face. | |||
Returns: | |||
mask_tensor : a mask image. | |||
""" | |||
mask = Image.new('RGB', face_image.size, color=(0, 0, 0)) | |||
d = ImageDraw.Draw(mask) | |||
landmarks = fr.face_landmarks(np.array(face_image)) | |||
area = [landmark | |||
for landmark in landmarks[0]['chin'] | |||
if landmark[1] > max(landmarks[0]['nose_tip'])[1]] | |||
area.append(landmarks[0]['nose_bridge'][1]) | |||
d.polygon(area, fill=(255, 255, 255)) | |||
mask = np.array(mask) | |||
mask = mask.astype(np.float32) | |||
for i in range(mask.shape[0]): | |||
for j in range(mask.shape[1]): | |||
for k in range(mask.shape[2]): | |||
if mask[i][j][k] == 255.: | |||
mask[i][j][k] = 0.5 | |||
else: | |||
mask[i][j][k] = 0 | |||
mask_tensor = Tensor(mask) | |||
mask_tensor = mask_tensor.swapaxes(0, 2).swapaxes(1, 2) | |||
mask_tensor.requires_grad = True | |||
return mask_tensor | |||
def detect_face(image): | |||
""" | |||
Face detection and alignment process using dlib library. | |||
Args: | |||
image (numpy.ndarray): image file location. | |||
Returns: | |||
face_image : Resized face image. | |||
""" | |||
dlib_detector = dlib.get_frontal_face_detector() | |||
dlib_shape_predictor = dlib.shape_predictor(frm.pose_predictor_model_location()) | |||
dlib_image = dlib.load_rgb_image(image) | |||
detections = dlib_detector(dlib_image, 1) | |||
dlib_faces = dlib.full_object_detections() | |||
for det in detections: | |||
dlib_faces.append(dlib_shape_predictor(dlib_image, det)) | |||
face_image = Image.fromarray(dlib.get_face_chip(dlib_image, dlib_faces[0], size=112)) | |||
return face_image | |||
def load_data(data): | |||
""" | |||
An auxiliary function that loads image data. | |||
Args: | |||
data (String): The path to the given data. | |||
Returns: | |||
list : Resize list of face images. | |||
""" | |||
image_files = [f for f in os.listdir(data) if re.search(r'.*\.(jpe?g|png)', f)] | |||
image_files_locs = [os.path.join(data, f) for f in image_files] | |||
image_list = [] | |||
for img in image_files_locs: | |||
image_list.append(detect_face(img)) | |||
return image_list |
@@ -0,0 +1,45 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""non target attack""" | |||
import numpy as np | |||
import matplotlib.image as mp | |||
from mindspore import context | |||
import adversarial_attack | |||
from FaceRecognition.eval import get_model | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
if __name__ == '__main__': | |||
inputs = adversarial_attack.load_data('photos/input/') | |||
targets = adversarial_attack.load_data('photos/target/') | |||
net = get_model() | |||
adversarial = adversarial_attack.FaceAdversarialAttack(inputs[0], targets[0], net) | |||
ATTACK_METHOD = "non_target_attack" | |||
tensor_dict = adversarial.train(attack_method=ATTACK_METHOD) | |||
mp.imsave('./outputs/adversarial_example.jpg', | |||
np.transpose(tensor_dict.get("adversarial_tensor").asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/mask.jpg', | |||
np.transpose(tensor_dict.get("mask_tensor").asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/input_image.jpg', | |||
np.transpose(tensor_dict.get("processed_input_tensor").asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/target_image.jpg', | |||
np.transpose(tensor_dict.get("processed_target_tensor").asnumpy(), (1, 2, 0))) | |||
adversarial.test_non_target_attack() |
@@ -0,0 +1,46 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""target attack""" | |||
import numpy as np | |||
import matplotlib.image as mp | |||
from mindspore import context | |||
import adversarial_attack | |||
from FaceRecognition.eval import get_model | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
if __name__ == '__main__': | |||
inputs = adversarial_attack.load_data('photos/input/') | |||
targets = adversarial_attack.load_data('photos/target/') | |||
net = get_model() | |||
adversarial = adversarial_attack.FaceAdversarialAttack(inputs[0], targets[0], net) | |||
ATTACK_METHOD = "target_attack" | |||
tensor_dict = adversarial.train(attack_method=ATTACK_METHOD) | |||
mp.imsave('./outputs/adversarial_example.jpg', | |||
np.transpose(tensor_dict.get("adversarial_tensor").asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/mask.jpg', | |||
np.transpose(tensor_dict.get("mask_tensor").asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/input_image.jpg', | |||
np.transpose(tensor_dict.get("processed_input_tensor").asnumpy(), (1, 2, 0))) | |||
mp.imsave('./outputs/target_image.jpg', | |||
np.transpose(tensor_dict.get("processed_target_tensor").asnumpy(), (1, 2, 0))) | |||
adversarial.test_target_attack() |
@@ -0,0 +1,154 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""optimization Settings""" | |||
import mindspore | |||
from mindspore import ops, nn, Tensor | |||
from mindspore.dataset.vision.py_transforms import ToTensor | |||
import mindspore.dataset.vision.py_transforms as P | |||
class MyTrainOneStepCell(nn.TrainOneStepCell): | |||
""" | |||
Encapsulation class of network training. | |||
Append an optimizer to the training network after that the construct | |||
function can be called to create the backward graph. | |||
Args: | |||
network (Cell): The training network. Note that loss function should have been added. | |||
optimizer (Optimizer): Optimizer for updating the weights. | |||
sens (Number): The adjust parameter. Default: 1.0. | |||
""" | |||
def __init__(self, network, optimizer, sens=1.0): | |||
super(MyTrainOneStepCell, self).__init__(network, optimizer, sens) | |||
self.grad = ops.composite.GradOperation(get_all=True, sens_param=False) | |||
def construct(self, *inputs): | |||
"""Defines the computation performed.""" | |||
loss = self.network(*inputs) | |||
grads = self.grad(self.network)(*inputs) | |||
self.optimizer(grads) | |||
return loss | |||
class MyWithLossCellTargetAttack(nn.Cell): | |||
"""The loss function defined by the target attack""" | |||
def __init__(self, net, loss_fn, input_tensor): | |||
super(MyWithLossCellTargetAttack, self).__init__(auto_prefix=False) | |||
self.net = net | |||
self._loss_fn = loss_fn | |||
self.std = Tensor([0.229, 0.224, 0.225]) | |||
self.mean = Tensor([0.485, 0.456, 0.406]) | |||
self.expand_dims = mindspore.ops.ExpandDims() | |||
self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
self.tensorize = ToTensor() | |||
self.input_tensor = input_tensor | |||
self.input_emb = self.net(self.expand_dims(self.input_tensor, 0)) | |||
@property | |||
def backbone_network(self): | |||
return self.net | |||
def construct(self, mask_tensor): | |||
ref = mask_tensor | |||
adversarial_tensor = mindspore.numpy.where( | |||
(ref == 0), | |||
self.input_tensor, | |||
(mask_tensor - self.mean[:, None, None]) / self.std[:, None, None]) | |||
adversarial_emb = self.net(self.expand_dims(adversarial_tensor, 0)) | |||
loss = self._loss_fn(adversarial_emb) | |||
return loss | |||
class MyWithLossCellNonTargetAttack(nn.Cell): | |||
"""The loss function defined by the non target attack""" | |||
def __init__(self, net, loss_fn, input_tensor): | |||
super(MyWithLossCellNonTargetAttack, self).__init__(auto_prefix=False) | |||
self.net = net | |||
self._loss_fn = loss_fn | |||
self.std = Tensor([0.229, 0.224, 0.225]) | |||
self.mean = Tensor([0.485, 0.456, 0.406]) | |||
self.expand_dims = mindspore.ops.ExpandDims() | |||
self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
self.tensorize = ToTensor() | |||
self.input_tensor = input_tensor | |||
self.input_emb = self.net(self.expand_dims(self.input_tensor, 0)) | |||
@property | |||
def backbone_network(self): | |||
return self.net | |||
def construct(self, mask_tensor): | |||
ref = mask_tensor | |||
adversarial_tensor = mindspore.numpy.where( | |||
(ref == 0), | |||
self.input_tensor, | |||
(mask_tensor - self.mean[:, None, None]) / self.std[:, None, None]) | |||
adversarial_emb = self.net(self.expand_dims(adversarial_tensor, 0)) | |||
loss = self._loss_fn(adversarial_emb, self.input_emb) | |||
return loss | |||
class FaceLossTargetAttack(nn.Cell): | |||
"""The loss function of the target attack""" | |||
def __init__(self, target_emb): | |||
super(FaceLossTargetAttack, self).__init__() | |||
self.uniformreal = ops.UniformReal(seed=2) | |||
self.sum = ops.ReduceSum(keep_dims=False) | |||
self.norm = nn.Norm(keep_dims=True) | |||
self.zeroslike = ops.ZerosLike() | |||
self.concat_op1 = ops.Concat(1) | |||
self.concat_op2 = ops.Concat(2) | |||
self.pow = ops.Pow() | |||
self.reduce_sum = ops.operations.ReduceSum() | |||
self.target_emb = target_emb | |||
self.abs = ops.Abs() | |||
self.reduce_mean = ops.ReduceMean() | |||
def construct(self, adversarial_emb): | |||
prod_sum = self.reduce_sum(adversarial_emb * self.target_emb, (1,)) | |||
square1 = self.reduce_sum(ops.functional.square(adversarial_emb), (1,)) | |||
square2 = self.reduce_sum(ops.functional.square(self.target_emb), (1,)) | |||
denom = ops.functional.sqrt(square1) * ops.functional.sqrt(square2) | |||
loss = -(prod_sum / denom) | |||
return loss | |||
class FaceLossNoTargetAttack(nn.Cell): | |||
"""The loss function of the non-target attack""" | |||
def __init__(self): | |||
"""Initialization""" | |||
super(FaceLossNoTargetAttack, self).__init__() | |||
self.uniformreal = ops.UniformReal(seed=2) | |||
self.sum = ops.ReduceSum(keep_dims=False) | |||
self.norm = nn.Norm(keep_dims=True) | |||
self.zeroslike = ops.ZerosLike() | |||
self.concat_op1 = ops.Concat(1) | |||
self.concat_op2 = ops.Concat(2) | |||
self.pow = ops.Pow() | |||
self.reduce_sum = ops.operations.ReduceSum() | |||
self.abs = ops.Abs() | |||
self.reduce_mean = ops.ReduceMean() | |||
def construct(self, adversarial_emb, input_emb): | |||
prod_sum = self.reduce_sum(adversarial_emb * input_emb, (1,)) | |||
square1 = self.reduce_sum(ops.functional.square(adversarial_emb), (1,)) | |||
square2 = self.reduce_sum(ops.functional.square(input_emb), (1,)) | |||
denom = ops.functional.sqrt(square1) * ops.functional.sqrt(square2) | |||
loss = prod_sum / denom | |||
return loss |
@@ -0,0 +1,59 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""test""" | |||
import numpy as np | |||
from mindspore import context, Tensor | |||
import mindspore | |||
from mindspore.dataset.vision.py_transforms import ToTensor | |||
import mindspore.dataset.vision.py_transforms as P | |||
from FaceRecognition.eval import get_model | |||
import adversarial_attack | |||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
if __name__ == '__main__': | |||
image = adversarial_attack.load_data('photos/adv_input/') | |||
inputs = adversarial_attack.load_data('photos/input/') | |||
targets = adversarial_attack.load_data('photos/target/') | |||
tensorize = ToTensor() | |||
normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |||
expand_dims = mindspore.ops.ExpandDims() | |||
mean = Tensor([0.485, 0.456, 0.406]) | |||
std = Tensor([0.229, 0.224, 0.225]) | |||
resnet = get_model() | |||
adv = Tensor(normalize(tensorize(image[0]))) | |||
input_tensor = Tensor(normalize(tensorize(inputs[0]))) | |||
target_tensor = Tensor(normalize(tensorize(targets[0]))) | |||
adversarial_emb = resnet(expand_dims(adv, 0)) | |||
input_emb = resnet(expand_dims(input_tensor, 0)) | |||
target_emb = resnet(expand_dims(target_tensor, 0)) | |||
adversarial_index = np.argmax(adversarial_emb.asnumpy()) | |||
target_index = np.argmax(target_emb.asnumpy()) | |||
input_index = np.argmax(input_emb.asnumpy()) | |||
print("input_label:", input_index) | |||
print("The confidence of the input image on the input label:", input_emb.asnumpy()[0][input_index]) | |||
print("================================") | |||
print("adversarial_label:", adversarial_index) | |||
print("The confidence of the adversarial sample on the correct label:", adversarial_emb.asnumpy()[0][input_index]) | |||
print("The confidence of the adversarial sample on the adversarial label:", | |||
adversarial_emb.asnumpy()[0][adversarial_index]) | |||
print("input_label:%d, adversarial_label:%d" % (input_index, adversarial_index)) |