@@ -105,9 +105,9 @@ class DeepFool(Attack): | |||||
max_iters (int): Max iterations, which should be | max_iters (int): Max iterations, which should be | ||||
greater than zero. Default: 50. | greater than zero. Default: 50. | ||||
overshoot (float): Overshoot parameter. Default: 0.02. | overshoot (float): Overshoot parameter. Default: 0.02. | ||||
norm_level (int): Order of the vector norm. Possible values: np.inf | |||||
norm_level (Union[int, str]): Order of the vector norm. Possible values: np.inf | |||||
or 2. Default: 2. | or 2. Default: 2. | ||||
bounds (tuple): Upper and lower bounds of data range. In form of (clip_min, | |||||
bounds (Union[tuple, list]): Upper and lower bounds of data range. In form of (clip_min, | |||||
clip_max). Default: None. | clip_max). Default: None. | ||||
sparse (bool): If True, input labels are sparse-coded. If False, | sparse (bool): If True, input labels are sparse-coded. If False, | ||||
input labels are onehot-coded. Default: True. | input labels are onehot-coded. Default: True. | ||||
@@ -149,13 +149,11 @@ def check_numpy_param(arg_name, arg_value): | |||||
ValueError: If value type is not in (list, tuple, numpy.ndarray). | ValueError: If value type is not in (list, tuple, numpy.ndarray). | ||||
""" | """ | ||||
_ = _check_array_not_empty(arg_name, arg_value) | _ = _check_array_not_empty(arg_name, arg_value) | ||||
if isinstance(arg_value, (list, tuple)): | |||||
arg_value = np.asarray(arg_value) | |||||
elif isinstance(arg_value, np.ndarray): | |||||
if isinstance(arg_value, np.ndarray): | |||||
arg_value = np.copy(arg_value) | arg_value = np.copy(arg_value) | ||||
else: | else: | ||||
msg = 'type of {} must be in (list, tuple, numpy.ndarray)'.format( | |||||
arg_name) | |||||
msg = 'type of {} must be numpy.ndarray, but got {}'.format( | |||||
arg_name, type(arg_value)) | |||||
LOGGER.error(TAG, msg) | LOGGER.error(TAG, msg) | ||||
raise TypeError(msg) | raise TypeError(msg) | ||||
return arg_value | return arg_value | ||||
@@ -220,6 +218,8 @@ def check_norm_level(norm_level): | |||||
""" | """ | ||||
check norm_level of regularization. | check norm_level of regularization. | ||||
""" | """ | ||||
if not isinstance(norm_level, (int, str)): | |||||
msg = 'Type of norm_level must be in [int, str], but got {}'.format(type(norm_level)) | |||||
accept_norm = [1, 2, '1', '2', 'l1', 'l2', 'inf', 'linf', np.inf] | accept_norm = [1, 2, '1', '2', 'l1', 'l2', 'inf', 'linf', np.inf] | ||||
if norm_level not in accept_norm: | if norm_level not in accept_norm: | ||||
msg = 'norm_level must be in {}, but got {}'.format(accept_norm, | msg = 'norm_level must be in {}, but got {}'.format(accept_norm, | ||||
@@ -147,7 +147,7 @@ def nes_mnist_attack(scene, top_k): | |||||
target_class) | target_class) | ||||
nes_instance.set_target_images(target_image) | nes_instance.set_target_images(target_image) | ||||
tag, adv, queries = nes_instance.generate(initial_img, target_class) | |||||
tag, adv, queries = nes_instance.generate(np.array(initial_img), np.array(target_class)) | |||||
if tag[0]: | if tag[0]: | ||||
success += 1 | success += 1 | ||||
queries_num += queries[0] | queries_num += queries[0] | ||||
@@ -17,9 +17,10 @@ Batch-generate-attack test. | |||||
import numpy as np | import numpy as np | ||||
import pytest | import pytest | ||||
import mindspore.context as context | |||||
import mindspore.ops.operations as P | import mindspore.ops.operations as P | ||||
from mindspore.ops.composite import GradOperation | |||||
from mindspore.nn import Cell, SoftmaxCrossEntropyWithLogits | from mindspore.nn import Cell, SoftmaxCrossEntropyWithLogits | ||||
import mindspore.context as context | |||||
from mindarmour.adv_robustness.attacks import FastGradientMethod | from mindarmour.adv_robustness.attacks import FastGradientMethod | ||||
@@ -54,6 +55,60 @@ class Net(Cell): | |||||
return out | return out | ||||
class Net2(Cell): | |||||
""" | |||||
Construct the network of target model. A network with multiple input data. | |||||
Examples: | |||||
>>> net = Net2() | |||||
""" | |||||
def __init__(self): | |||||
super(Net2, self).__init__() | |||||
self._softmax = P.Softmax() | |||||
def construct(self, inputs1, inputs2): | |||||
out1 = self._softmax(inputs1) | |||||
out2 = self._softmax(inputs2) | |||||
return out1 + out2, out1 - out2 | |||||
class LossNet(Cell): | |||||
""" | |||||
Loss function for test. | |||||
""" | |||||
def construct(self, loss1, loss2, labels1, labels2): | |||||
return loss1 + loss2 - labels1 - labels2 | |||||
class WithLossCell(Cell): | |||||
"""Wrap the network with loss function""" | |||||
def __init__(self, backbone, loss_fn): | |||||
super(WithLossCell, self).__init__(auto_prefix=False) | |||||
self._backbone = backbone | |||||
self._loss_fn = loss_fn | |||||
def construct(self, inputs1, inputs2, labels1, labels2): | |||||
out = self._backbone(inputs1, inputs2) | |||||
return self._loss_fn(*out, labels1, labels2) | |||||
class GradWrapWithLoss(Cell): | |||||
""" | |||||
Construct a network to compute the gradient of loss function in \ | |||||
input space and weighted by 'weight'. | |||||
""" | |||||
def __init__(self, network): | |||||
super(GradWrapWithLoss, self).__init__() | |||||
self._grad_all = GradOperation(get_all=True, sens_param=False) | |||||
self._network = network | |||||
def construct(self, *inputs): | |||||
gout = self._grad_all(self._network)(*inputs) | |||||
return gout[0] | |||||
@pytest.mark.level0 | @pytest.mark.level0 | ||||
@pytest.mark.platform_arm_ascend_training | @pytest.mark.platform_arm_ascend_training | ||||
@pytest.mark.platform_x86_ascend_training | @pytest.mark.platform_x86_ascend_training | ||||
@@ -71,4 +126,30 @@ def test_batch_generate_attack(): | |||||
ms_adv_x = attack.batch_generate(input_np, label, batch_size=32) | ms_adv_x = attack.batch_generate(input_np, label, batch_size=32) | ||||
assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \ | assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \ | ||||
' must not be equal to original value.' | |||||
@pytest.mark.level0 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_batch_generate_attack_multi_inputs(): | |||||
""" | |||||
Attack with batch-generate by multi-inputs. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
inputs1 = np.random.random((128, 10)).astype(np.float32) | |||||
inputs2 = np.random.random((128, 10)).astype(np.float32) | |||||
labels1 = np.random.randint(0, 10, 128).astype(np.int32) | |||||
labels2 = np.random.randint(0, 10, 128).astype(np.int32) | |||||
labels1 = np.eye(10)[labels1].astype(np.float32) | |||||
labels2 = np.eye(10)[labels2].astype(np.float32) | |||||
with_loss_cell = WithLossCell(Net2(), LossNet()) | |||||
grad_with_loss_net = GradWrapWithLoss(with_loss_cell) | |||||
attack = FastGradientMethod(grad_with_loss_net) | |||||
ms_adv_x = attack.batch_generate((inputs1, inputs2), (labels1, labels2), batch_size=32) | |||||
assert np.any(ms_adv_x != inputs1), 'Fast gradient method: generate value' \ | |||||
' must not be equal to original value.' | ' must not be equal to original value.' |
@@ -307,52 +307,6 @@ def test_fast_gradient_method_multi_inputs(): | |||||
' must not be equal to original value.' | ' must not be equal to original value.' | ||||
@pytest.mark.level0 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_batch_generate(): | |||||
""" | |||||
Fast gradient method unit test. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
input_np = np.random.random([10, 3]).astype(np.float32) | |||||
label = np.random.randint(0, 3, [10]) | |||||
label = np.eye(3)[label].astype(np.float32) | |||||
loss_fn = SoftmaxCrossEntropyWithLogits(sparse=False) | |||||
attack = FastGradientMethod(Net(), loss_fn=loss_fn) | |||||
ms_adv_x = attack.batch_generate(input_np, label, 4) | |||||
assert np.any(ms_adv_x != input_np), 'Fast gradient method: generate value' \ | |||||
' must not be equal to original value.' | |||||
@pytest.mark.level0 | |||||
@pytest.mark.platform_arm_ascend_training | |||||
@pytest.mark.platform_x86_ascend_training | |||||
@pytest.mark.env_card | |||||
@pytest.mark.component_mindarmour | |||||
def test_batch_generate_multi_inputs(): | |||||
""" | |||||
Fast gradient method unit test. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
inputs1 = np.asarray([[0.1, 0.2, 0.7]]).astype(np.float32) | |||||
inputs2 = np.asarray([[0.4, 0.8, 0.5]]).astype(np.float32) | |||||
labels1 = np.expand_dims(np.eye(3)[1].astype(np.float32), axis=0) | |||||
labels2 = np.expand_dims(np.eye(3)[2].astype(np.float32), axis=0) | |||||
with_loss_cell = WithLossCell(Net2(), LossNet()) | |||||
grad_with_loss_net = GradWrapWithLoss(with_loss_cell) | |||||
attack = FastGradientMethod(grad_with_loss_net) | |||||
ms_adv_x = attack.generate((inputs1, inputs2), (labels1, labels2)) | |||||
assert np.any(ms_adv_x != inputs1), 'Fast gradient method: generate value' \ | |||||
' must not be equal to original value.' | |||||
@pytest.mark.level0 | @pytest.mark.level0 | ||||
@pytest.mark.platform_arm_ascend_training | @pytest.mark.platform_arm_ascend_training | ||||
@pytest.mark.platform_x86_ascend_training | @pytest.mark.platform_x86_ascend_training | ||||
@@ -14,6 +14,7 @@ | |||||
""" | """ | ||||
Radar map test. | Radar map test. | ||||
""" | """ | ||||
import numpy as np | |||||
import pytest | import pytest | ||||
from mindarmour.adv_robustness.evaluations import RadarMetric | from mindarmour.adv_robustness.evaluations import RadarMetric | ||||
@@ -28,7 +29,7 @@ def test_radar_metric(): | |||||
metrics_name = ['MR', 'ACAC', 'ASS', 'NTE', 'RGB'] | metrics_name = ['MR', 'ACAC', 'ASS', 'NTE', 'RGB'] | ||||
def_metrics = [0.9, 0.85, 0.6, 0.7, 0.8] | def_metrics = [0.9, 0.85, 0.6, 0.7, 0.8] | ||||
raw_metrics = [0.5, 0.3, 0.55, 0.65, 0.7] | raw_metrics = [0.5, 0.3, 0.55, 0.65, 0.7] | ||||
metrics_data = [def_metrics, raw_metrics] | |||||
metrics_data = np.array([def_metrics, raw_metrics]) | |||||
metrics_labels = ['before', 'after'] | metrics_labels = ['before', 'after'] | ||||
# create obj | # create obj | ||||
@@ -46,7 +47,7 @@ def test_value_error(): | |||||
metrics_name = ['MR', 'ACAC', 'ASS', 'NTE', 'RGB'] | metrics_name = ['MR', 'ACAC', 'ASS', 'NTE', 'RGB'] | ||||
def_metrics = [0.9, 0.85, 0.6, 0.7, 0.8] | def_metrics = [0.9, 0.85, 0.6, 0.7, 0.8] | ||||
raw_metrics = [0.5, 0.3, 0.55, 0.65, 0.7] | raw_metrics = [0.5, 0.3, 0.55, 0.65, 0.7] | ||||
metrics_data = [def_metrics, raw_metrics] | |||||
metrics_data = np.array([def_metrics, raw_metrics]) | |||||
metrics_labels = ['before', 'after'] | metrics_labels = ['before', 'after'] | ||||
with pytest.raises(ValueError): | with pytest.raises(ValueError): | ||||