Merge pull request !18 from jxlang910/mastertags/v0.3.0-alpha
@@ -41,7 +41,7 @@ def test_lenet_mnist_fuzzing(): | |||||
model = Model(net) | model = Model(net) | ||||
# get training data | # get training data | ||||
data_list = "./MNIST_datasets/train" | |||||
data_list = "./MNIST_unzip/train" | |||||
batch_size = 32 | batch_size = 32 | ||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=True) | ds = generate_mnist_dataset(data_list, batch_size, sparse=True) | ||||
train_images = [] | train_images = [] | ||||
@@ -55,7 +55,7 @@ def test_lenet_mnist_fuzzing(): | |||||
# fuzz test with original test data | # fuzz test with original test data | ||||
# get test data | # get test data | ||||
data_list = "./MNIST_datasets/test" | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | batch_size = 32 | ||||
ds = generate_mnist_dataset(data_list, batch_size, sparse=True) | ds = generate_mnist_dataset(data_list, batch_size, sparse=True) | ||||
test_images = [] | test_images = [] | ||||
@@ -39,7 +39,7 @@ TAG = 'Ad_Test' | |||||
def test_ad(): | def test_ad(): | ||||
"""UT for adversarial defense.""" | """UT for adversarial defense.""" | ||||
num_classes = 10 | num_classes = 10 | ||||
batch_size = 16 | |||||
batch_size = 32 | |||||
sparse = False | sparse = False | ||||
context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
@@ -41,7 +41,7 @@ TAG = 'Ead_Test' | |||||
def test_ead(): | def test_ead(): | ||||
"""UT for ensemble adversarial defense.""" | """UT for ensemble adversarial defense.""" | ||||
num_classes = 10 | num_classes = 10 | ||||
batch_size = 16 | |||||
batch_size = 64 | |||||
sparse = False | sparse = False | ||||
context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
@@ -53,7 +53,7 @@ def test_ead(): | |||||
if not sparse: | if not sparse: | ||||
labels = np.eye(num_classes)[labels].astype(np.float32) | labels = np.eye(num_classes)[labels].astype(np.float32) | ||||
net = SimpleNet() | |||||
net = Net() | |||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse) | loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse) | ||||
optimizer = Momentum(net.trainable_params(), 0.001, 0.9) | optimizer = Momentum(net.trainable_params(), 0.001, 0.9) | ||||
@@ -39,7 +39,7 @@ TAG = 'Nad_Test' | |||||
def test_nad(): | def test_nad(): | ||||
"""UT for natural adversarial defense.""" | """UT for natural adversarial defense.""" | ||||
num_classes = 10 | num_classes = 10 | ||||
batch_size = 16 | |||||
batch_size = 32 | |||||
sparse = False | sparse = False | ||||
context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||
@@ -39,7 +39,7 @@ TAG = 'Pad_Test' | |||||
def test_pad(): | def test_pad(): | ||||
"""UT for projected adversarial defense.""" | """UT for projected adversarial defense.""" | ||||
num_classes = 10 | num_classes = 10 | ||||
batch_size = 16 | |||||
batch_size = 32 | |||||
sparse = False | sparse = False | ||||
context.set_context(mode=context.GRAPH_MODE) | context.set_context(mode=context.GRAPH_MODE) | ||||