|
|
@@ -58,8 +58,7 @@ def test_dp_monitor(): |
|
|
|
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', |
|
|
|
suggest_epoch) |
|
|
|
network = LeNet5() |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, |
|
|
|
reduction="mean") |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) |
|
|
|
|
|
|
|
model = Model(network, net_loss, net_opt) |
|
|
@@ -88,8 +87,7 @@ def test_dp_monitor_gpu(): |
|
|
|
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', |
|
|
|
suggest_epoch) |
|
|
|
network = LeNet5() |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, |
|
|
|
reduction="mean") |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) |
|
|
|
|
|
|
|
model = Model(network, net_loss, net_opt) |
|
|
@@ -118,8 +116,7 @@ def test_dp_monitor_cpu(): |
|
|
|
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', |
|
|
|
suggest_epoch) |
|
|
|
network = LeNet5() |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, |
|
|
|
reduction="mean") |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) |
|
|
|
|
|
|
|
model = Model(network, net_loss, net_opt) |
|
|
@@ -149,8 +146,7 @@ def test_dp_monitor_zcdp(): |
|
|
|
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', |
|
|
|
suggest_epoch) |
|
|
|
network = LeNet5() |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, |
|
|
|
reduction="mean") |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) |
|
|
|
|
|
|
|
model = Model(network, net_loss, net_opt) |
|
|
@@ -179,8 +175,7 @@ def test_dp_monitor_zcdp_gpu(): |
|
|
|
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', |
|
|
|
suggest_epoch) |
|
|
|
network = LeNet5() |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, |
|
|
|
reduction="mean") |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) |
|
|
|
|
|
|
|
model = Model(network, net_loss, net_opt) |
|
|
@@ -209,8 +204,7 @@ def test_dp_monitor_zcdp_cpu(): |
|
|
|
LOGGER.info(TAG, 'The recommended maximum training epochs is: %s', |
|
|
|
suggest_epoch) |
|
|
|
network = LeNet5() |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, |
|
|
|
reduction="mean") |
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") |
|
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) |
|
|
|
|
|
|
|
model = Model(network, net_loss, net_opt) |
|
|
|