@@ -0,0 +1,157 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""generate adversarial example for yolov3_darknet53 by DeepFool""" | |||
import os | |||
import argparse | |||
import datetime | |||
import numpy as np | |||
from mindspore import Tensor | |||
from mindspore.nn import Cell | |||
from mindspore.ops import operations as P | |||
from mindspore.context import ParallelMode | |||
from mindspore import context | |||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
import mindspore as ms | |||
from mindarmour.adv_robustness.attacks import DeepFool | |||
from src.yolo import YOLOV3DarkNet53 | |||
from src.logger import get_logger | |||
from src.yolo_dataset import create_yolo_dataset | |||
from src.config import ConfigYOLOV3DarkNet53 | |||
def parse_args(): | |||
"""Parse arguments.""" | |||
parser = argparse.ArgumentParser('mindspore coco testing') | |||
# device related | |||
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'], | |||
help='device where the code will be implemented. (Default: Ascend)') | |||
parser.add_argument('--data_dir', type=str, default='', help='train data dir') | |||
parser.add_argument('--pretrained', default='', type=str, help='model_path, local pretrained model to load') | |||
parser.add_argument('--samples_num', default=1, type=int, help='Number of sample to be generated.') | |||
parser.add_argument('--log_path', type=str, default='outputs/', help='checkpoint save location') | |||
parser.add_argument('--testing_shape', type=str, default='', help='shape for test ') | |||
args, _ = parser.parse_known_args() | |||
args.data_root = os.path.join(args.data_dir, 'val2014') | |||
args.annFile = os.path.join(args.data_dir, 'annotations/instances_val2014.json') | |||
return args | |||
def conver_testing_shape(args): | |||
"""Convert testing shape to list.""" | |||
testing_shape = [int(args.testing_shape), int(args.testing_shape)] | |||
return testing_shape | |||
class SolveOutput(Cell): | |||
"""Solve output of the target network to adapt DeepFool.""" | |||
def __init__(self, network): | |||
super(SolveOutput, self).__init__() | |||
self._network = network | |||
self._reshape = P.Reshape() | |||
def construct(self, image, input_shape): | |||
prediction = self._network(image, input_shape) | |||
output_big = prediction[0] | |||
output_big = self._reshape(output_big, (output_big.shape[0], -1, 85)) | |||
output_big_boxes = output_big[:, :, 0: 5] | |||
output_big_logits = output_big[:, :, 5:] | |||
return output_big_boxes, output_big_logits | |||
def test(): | |||
"""The function of eval.""" | |||
args = parse_args() | |||
devid = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0 | |||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=True, device_id=devid) | |||
# logger | |||
args.outputs_dir = os.path.join(args.log_path, | |||
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) | |||
rank_id = int(os.environ.get('RANK_ID')) if os.environ.get('RANK_ID') else 0 | |||
args.logger = get_logger(args.outputs_dir, rank_id) | |||
context.reset_auto_parallel_context() | |||
parallel_mode = ParallelMode.STAND_ALONE | |||
context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=1) | |||
args.logger.info('Creating Network....') | |||
network = SolveOutput(YOLOV3DarkNet53(is_training=False)) | |||
data_root = args.data_root | |||
ann_file = args.annFile | |||
args.logger.info(args.pretrained) | |||
if os.path.isfile(args.pretrained): | |||
param_dict = load_checkpoint(args.pretrained) | |||
param_dict_new = {} | |||
for key, values in param_dict.items(): | |||
if key.startswith('moments.'): | |||
continue | |||
elif key.startswith('yolo_network.'): | |||
param_dict_new[key[13:]] = values | |||
else: | |||
param_dict_new[key] = values | |||
load_param_into_net(network, param_dict_new) | |||
args.logger.info('load_model {} success'.format(args.pretrained)) | |||
else: | |||
args.logger.info('{} not exists or not a pre-trained file'.format(args.pretrained)) | |||
assert FileNotFoundError('{} not exists or not a pre-trained file'.format(args.pretrained)) | |||
exit(1) | |||
config = ConfigYOLOV3DarkNet53() | |||
if args.testing_shape: | |||
config.test_img_shape = conver_testing_shape(args) | |||
ds, data_size = create_yolo_dataset(data_root, ann_file, is_training=False, batch_size=1, | |||
max_epoch=1, device_num=1, rank=rank_id, shuffle=False, | |||
config=config) | |||
args.logger.info('testing shape : {}'.format(config.test_img_shape)) | |||
args.logger.info('totol {} images to eval'.format(data_size)) | |||
network.set_train(False) | |||
# build attacker | |||
attack = DeepFool(network, num_classes=80, model_type='detection', reserve_ratio=0.9, bounds=(0, 1)) | |||
input_shape = Tensor(tuple(config.test_img_shape), ms.float32) | |||
args.logger.info('Start inference....') | |||
batch_num = args.samples_num | |||
adv_example = [] | |||
for i, data in enumerate(ds.create_dict_iterator(num_epochs=1)): | |||
if i >= batch_num: | |||
break | |||
image = data["image"] | |||
image_shape = data["image_shape"] | |||
gt_boxes, gt_logits = network(image, input_shape) | |||
gt_boxes, gt_logits = gt_boxes.asnumpy(), gt_logits.asnumpy() | |||
gt_labels = np.argmax(gt_logits, axis=2) | |||
adv_img = attack.generate((image.asnumpy(), image_shape.asnumpy()), (gt_boxes, gt_labels)) | |||
adv_example.append(adv_img) | |||
np.save('adv_example.npy', adv_example) | |||
if __name__ == "__main__": | |||
test() |
@@ -0,0 +1,14 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ |
@@ -0,0 +1,68 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Config parameters for Darknet based yolov3_darknet53 models.""" | |||
class ConfigYOLOV3DarkNet53: | |||
""" | |||
Config parameters for the yolov3_darknet53. | |||
Examples: | |||
ConfigYOLOV3DarkNet53() | |||
""" | |||
# train_param | |||
# data augmentation related | |||
hue = 0.1 | |||
saturation = 1.5 | |||
value = 1.5 | |||
jitter = 0.3 | |||
resize_rate = 1 | |||
multi_scale = [[320, 320], | |||
[352, 352], | |||
[384, 384], | |||
[416, 416], | |||
[448, 448], | |||
[480, 480], | |||
[512, 512], | |||
[544, 544], | |||
[576, 576], | |||
[608, 608] | |||
] | |||
num_classes = 80 | |||
max_box = 50 | |||
backbone_input_shape = [32, 64, 128, 256, 512] | |||
backbone_shape = [64, 128, 256, 512, 1024] | |||
backbone_layers = [1, 2, 8, 8, 4] | |||
# confidence under ignore_threshold means no object when training | |||
ignore_threshold = 0.7 | |||
# h->w | |||
anchor_scales = [(10, 13), | |||
(16, 30), | |||
(33, 23), | |||
(30, 61), | |||
(62, 45), | |||
(59, 119), | |||
(116, 90), | |||
(156, 198), | |||
(373, 326)] | |||
out_channel = 255 | |||
# test_param | |||
test_img_shape = [416, 416] |
@@ -0,0 +1,80 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Convert weight to mindspore ckpt.""" | |||
import os | |||
import argparse | |||
import numpy as np | |||
from mindspore.train.serialization import save_checkpoint | |||
from mindspore import Tensor | |||
from src.yolo import YOLOV3DarkNet53 | |||
def load_weight(weights_file): | |||
"""Loads pre-trained weights.""" | |||
if not os.path.isfile(weights_file): | |||
raise ValueError(f'"{weights_file}" is not a valid weight file.') | |||
with open(weights_file, 'rb') as fp: | |||
np.fromfile(fp, dtype=np.int32, count=5) | |||
return np.fromfile(fp, dtype=np.float32) | |||
def build_network(): | |||
"""Build YOLOv3 network.""" | |||
network = YOLOV3DarkNet53(is_training=True) | |||
params = network.get_parameters() | |||
params = [p for p in params if 'backbone' in p.name] | |||
return params | |||
def convert(weights_file, output_file): | |||
"""Conver weight to mindspore ckpt.""" | |||
params = build_network() | |||
weights = load_weight(weights_file) | |||
index = 0 | |||
param_list = [] | |||
for i in range(0, len(params), 5): | |||
weight = params[i] | |||
mean = params[i+1] | |||
var = params[i+2] | |||
gamma = params[i+3] | |||
beta = params[i+4] | |||
beta_data = weights[index: index+beta.size()].reshape(beta.shape) | |||
index += beta.size() | |||
gamma_data = weights[index: index+gamma.size()].reshape(gamma.shape) | |||
index += gamma.size() | |||
mean_data = weights[index: index+mean.size()].reshape(mean.shape) | |||
index += mean.size() | |||
var_data = weights[index: index + var.size()].reshape(var.shape) | |||
index += var.size() | |||
weight_data = weights[index: index+weight.size()].reshape(weight.shape) | |||
index += weight.size() | |||
param_list.append({'name': weight.name, 'type': weight.dtype, 'shape': weight.shape, | |||
'data': Tensor(weight_data)}) | |||
param_list.append({'name': mean.name, 'type': mean.dtype, 'shape': mean.shape, 'data': Tensor(mean_data)}) | |||
param_list.append({'name': var.name, 'type': var.dtype, 'shape': var.shape, 'data': Tensor(var_data)}) | |||
param_list.append({'name': gamma.name, 'type': gamma.dtype, 'shape': gamma.shape, 'data': Tensor(gamma_data)}) | |||
param_list.append({'name': beta.name, 'type': beta.dtype, 'shape': beta.shape, 'data': Tensor(beta_data)}) | |||
save_checkpoint(param_list, output_file) | |||
if __name__ == "__main__": | |||
parser = argparse.ArgumentParser(description="yolov3 weight convert.") | |||
parser.add_argument("--input_file", type=str, default="./darknet53.conv.74", help="input file path.") | |||
parser.add_argument("--output_file", type=str, default="./ackbone_darknet53.ckpt", help="output file path.") | |||
args_opt = parser.parse_args() | |||
convert(args_opt.input_file, args_opt.output_file) |
@@ -0,0 +1,212 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""DarkNet model.""" | |||
import mindspore.nn as nn | |||
from mindspore.ops import operations as P | |||
# pylint: disable=locally-disables, missing-docstring | |||
def conv_block(in_channels, | |||
out_channels, | |||
kernel_size, | |||
stride, | |||
dilation=1): | |||
"""Get a conv2d batchnorm and relu layer""" | |||
pad_mode = 'same' | |||
padding = 0 | |||
return nn.SequentialCell( | |||
[nn.Conv2d(in_channels, | |||
out_channels, | |||
kernel_size=kernel_size, | |||
stride=stride, | |||
padding=padding, | |||
dilation=dilation, | |||
pad_mode=pad_mode), | |||
nn.BatchNorm2d(out_channels, momentum=0.1), | |||
nn.ReLU()] | |||
) | |||
class ResidualBlock(nn.Cell): | |||
""" | |||
DarkNet V1 residual block definition. | |||
Args: | |||
in_channels: Integer. Input channel. | |||
out_channels: Integer. Output channel. | |||
Returns: | |||
Tensor, output tensor. | |||
Examples: | |||
ResidualBlock(3, 208) | |||
""" | |||
expansion = 4 | |||
def __init__(self, | |||
in_channels, | |||
out_channels): | |||
super(ResidualBlock, self).__init__() | |||
out_chls = out_channels//2 | |||
self.conv1 = conv_block(in_channels, out_chls, kernel_size=1, stride=1) | |||
self.conv2 = conv_block(out_chls, out_channels, kernel_size=3, stride=1) | |||
self.add = P.TensorAdd() | |||
def construct(self, x): | |||
identity = x | |||
out = self.conv1(x) | |||
out = self.conv2(out) | |||
out = self.add(out, identity) | |||
return out | |||
class DarkNet(nn.Cell): | |||
""" | |||
DarkNet V1 network. | |||
Args: | |||
block: Cell. Block for network. | |||
layer_nums: List. Numbers of different layers. | |||
in_channels: Integer. Input channel. | |||
out_channels: Integer. Output channel. | |||
detect: Bool. Whether detect or not. Default:False. | |||
Returns: | |||
Tuple, tuple of output tensor,(f1,f2,f3,f4,f5). | |||
Examples: | |||
DarkNet(ResidualBlock, | |||
[1, 2, 8, 8, 4], | |||
[32, 64, 128, 256, 512], | |||
[64, 128, 256, 512, 1024], | |||
100) | |||
""" | |||
def __init__(self, | |||
block, | |||
layer_nums, | |||
in_channels, | |||
out_channels, | |||
detect=False): | |||
super(DarkNet, self).__init__() | |||
self.outchannel = out_channels[-1] | |||
self.detect = detect | |||
if not len(layer_nums) == len(in_channels) == len(out_channels) == 5: | |||
raise ValueError("the length of layer_num, inchannel, outchannel list must be 5!") | |||
self.conv0 = conv_block(3, | |||
in_channels[0], | |||
kernel_size=3, | |||
stride=1) | |||
self.conv1 = conv_block(in_channels[0], | |||
out_channels[0], | |||
kernel_size=3, | |||
stride=2) | |||
self.layer1 = self._make_layer(block, | |||
layer_nums[0], | |||
in_channel=out_channels[0], | |||
out_channel=out_channels[0]) | |||
self.conv2 = conv_block(in_channels[1], | |||
out_channels[1], | |||
kernel_size=3, | |||
stride=2) | |||
self.layer2 = self._make_layer(block, | |||
layer_nums[1], | |||
in_channel=out_channels[1], | |||
out_channel=out_channels[1]) | |||
self.conv3 = conv_block(in_channels[2], | |||
out_channels[2], | |||
kernel_size=3, | |||
stride=2) | |||
self.layer3 = self._make_layer(block, | |||
layer_nums[2], | |||
in_channel=out_channels[2], | |||
out_channel=out_channels[2]) | |||
self.conv4 = conv_block(in_channels[3], | |||
out_channels[3], | |||
kernel_size=3, | |||
stride=2) | |||
self.layer4 = self._make_layer(block, | |||
layer_nums[3], | |||
in_channel=out_channels[3], | |||
out_channel=out_channels[3]) | |||
self.conv5 = conv_block(in_channels[4], | |||
out_channels[4], | |||
kernel_size=3, | |||
stride=2) | |||
self.layer5 = self._make_layer(block, | |||
layer_nums[4], | |||
in_channel=out_channels[4], | |||
out_channel=out_channels[4]) | |||
def _make_layer(self, block, layer_num, in_channel, out_channel): | |||
""" | |||
Make Layer for DarkNet. | |||
:param block: Cell. DarkNet block. | |||
:param layer_num: Integer. Layer number. | |||
:param in_channel: Integer. Input channel. | |||
:param out_channel: Integer. Output channel. | |||
Examples: | |||
_make_layer(ConvBlock, 1, 128, 256) | |||
""" | |||
layers = [] | |||
darkblk = block(in_channel, out_channel) | |||
layers.append(darkblk) | |||
for _ in range(1, layer_num): | |||
darkblk = block(out_channel, out_channel) | |||
layers.append(darkblk) | |||
return nn.SequentialCell(layers) | |||
def construct(self, x): | |||
c1 = self.conv0(x) | |||
c2 = self.conv1(c1) | |||
c3 = self.layer1(c2) | |||
c4 = self.conv2(c3) | |||
c5 = self.layer2(c4) | |||
c6 = self.conv3(c5) | |||
c7 = self.layer3(c6) | |||
c8 = self.conv4(c7) | |||
c9 = self.layer4(c8) | |||
c10 = self.conv5(c9) | |||
c11 = self.layer5(c10) | |||
if self.detect: | |||
return c7, c9, c11 | |||
return c11 | |||
def get_out_channels(self): | |||
return self.outchannel | |||
def darknet53(): | |||
""" | |||
Get DarkNet53 neural network. | |||
Returns: | |||
Cell, cell instance of DarkNet53 neural network. | |||
Examples: | |||
darknet53() | |||
""" | |||
return DarkNet(ResidualBlock, [1, 2, 8, 8, 4], | |||
[32, 64, 128, 256, 512], | |||
[64, 128, 256, 512, 1024]) |
@@ -0,0 +1,60 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Yolo dataset distributed sampler.""" | |||
from __future__ import division | |||
import math | |||
import numpy as np | |||
class DistributedSampler: | |||
"""Distributed sampler.""" | |||
def __init__(self, dataset_size, num_replicas=None, rank=None, shuffle=True): | |||
if num_replicas is None: | |||
print("***********Setting world_size to 1 since it is not passed in ******************") | |||
num_replicas = 1 | |||
if rank is None: | |||
print("***********Setting rank to 0 since it is not passed in ******************") | |||
rank = 0 | |||
self.dataset_size = dataset_size | |||
self.num_replicas = num_replicas | |||
self.rank = rank | |||
self.epoch = 0 | |||
self.num_samples = int(math.ceil(dataset_size * 1.0 / self.num_replicas)) | |||
self.total_size = self.num_samples * self.num_replicas | |||
self.shuffle = shuffle | |||
def __iter__(self): | |||
# deterministically shuffle based on epoch | |||
if self.shuffle: | |||
indices = np.random.RandomState(seed=self.epoch).permutation(self.dataset_size) | |||
# np.array type. number from 0 to len(dataset_size)-1, used as index of dataset | |||
indices = indices.tolist() | |||
self.epoch += 1 | |||
# change to list type | |||
else: | |||
indices = list(range(self.dataset_size)) | |||
# add extra samples to make it evenly divisible | |||
indices += indices[:(self.total_size - len(indices))] | |||
assert len(indices) == self.total_size | |||
# subsample | |||
indices = indices[self.rank:self.total_size:self.num_replicas] | |||
assert len(indices) == self.num_samples | |||
return iter(indices) | |||
def __len__(self): | |||
return self.num_samples |
@@ -0,0 +1,204 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Parameter init.""" | |||
import math | |||
from functools import reduce | |||
import numpy as np | |||
from mindspore.common import initializer as init | |||
from mindspore.common.initializer import Initializer as MeInitializer | |||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
import mindspore.nn as nn | |||
from .util import load_backbone | |||
def calculate_gain(nonlinearity, param=None): | |||
r"""Return the recommended gain value for the given nonlinearity function. | |||
The values are as follows: | |||
================= ==================================================== | |||
nonlinearity gain | |||
================= ==================================================== | |||
Linear / Identity :math:`1` | |||
Conv{1,2,3}D :math:`1` | |||
Sigmoid :math:`1` | |||
Tanh :math:`\frac{5}{3}` | |||
ReLU :math:`\sqrt{2}` | |||
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}` | |||
================= ==================================================== | |||
Args: | |||
nonlinearity: the non-linear function (`nn.functional` name) | |||
param: optional parameter for the non-linear function | |||
Examples: | |||
>>> gain = nn.init.calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2 | |||
""" | |||
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] | |||
if nonlinearity in linear_fns or nonlinearity == 'sigmoid': | |||
return 1 | |||
if nonlinearity == 'tanh': | |||
return 5.0 / 3 | |||
if nonlinearity == 'relu': | |||
return math.sqrt(2.0) | |||
if nonlinearity == 'leaky_relu': | |||
if param is None: | |||
negative_slope = 0.01 | |||
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): | |||
# True/False are instances of int, hence check above | |||
negative_slope = param | |||
else: | |||
raise ValueError("negative_slope {} not a valid number".format(param)) | |||
return math.sqrt(2.0 / (1 + negative_slope ** 2)) | |||
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) | |||
def _assignment(arr, num): | |||
"""Assign the value of 'num' and 'arr'.""" | |||
if arr.shape == (): | |||
arr = arr.reshape((1)) | |||
arr[:] = num | |||
arr = arr.reshape(()) | |||
else: | |||
if isinstance(num, np.ndarray): | |||
arr[:] = num[:] | |||
else: | |||
arr[:] = num | |||
return arr | |||
def _calculate_correct_fan(array, mode): | |||
mode = mode.lower() | |||
valid_modes = ['fan_in', 'fan_out'] | |||
if mode not in valid_modes: | |||
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) | |||
fan_in, fan_out = _calculate_fan_in_and_fan_out(array) | |||
return fan_in if mode == 'fan_in' else fan_out | |||
def kaiming_uniform_(arr, a=0, mode='fan_in', nonlinearity='leaky_relu'): | |||
r"""Fills the input `Tensor` with values according to the method | |||
described in `Delving deep into rectifiers: Surpassing human-level | |||
performance on ImageNet classification` - He, K. et al. (2015), using a | |||
uniform distribution. The resulting tensor will have values sampled from | |||
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where | |||
.. math:: | |||
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} | |||
Also known as He initialization. | |||
Args: | |||
tensor: an n-dimensional `Tensor` | |||
a: the negative slope of the rectifier used after this layer (only | |||
used with ``'leaky_relu'``) | |||
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'`` | |||
preserves the magnitude of the variance of the weights in the | |||
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the | |||
backwards pass. | |||
nonlinearity: the non-linear function (`nn.functional` name), | |||
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default). | |||
Examples: | |||
>>> w = np.empty(3, 5) | |||
>>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu') | |||
""" | |||
fan = _calculate_correct_fan(arr, mode) | |||
gain = calculate_gain(nonlinearity, a) | |||
std = gain / math.sqrt(fan) | |||
bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation | |||
return np.random.uniform(-bound, bound, arr.shape) | |||
def _calculate_fan_in_and_fan_out(arr): | |||
"""Calculate fan in and fan out.""" | |||
dimensions = len(arr.shape) | |||
if dimensions < 2: | |||
raise ValueError("Fan in and fan out can not be computed for array with fewer than 2 dimensions") | |||
num_input_fmaps = arr.shape[1] | |||
num_output_fmaps = arr.shape[0] | |||
receptive_field_size = 1 | |||
if dimensions > 2: | |||
receptive_field_size = reduce(lambda x, y: x * y, arr.shape[2:]) | |||
fan_in = num_input_fmaps * receptive_field_size | |||
fan_out = num_output_fmaps * receptive_field_size | |||
return fan_in, fan_out | |||
class KaimingUniform(MeInitializer): | |||
"""Kaiming uniform initializer.""" | |||
def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'): | |||
super(KaimingUniform, self).__init__() | |||
self.a = a | |||
self.mode = mode | |||
self.nonlinearity = nonlinearity | |||
def _initialize(self, arr): | |||
tmp = kaiming_uniform_(arr, self.a, self.mode, self.nonlinearity) | |||
_assignment(arr, tmp) | |||
def default_recurisive_init(custom_cell): | |||
"""Initialize parameter.""" | |||
for _, cell in custom_cell.cells_and_names(): | |||
if isinstance(cell, nn.Conv2d): | |||
cell.weight.set_data(init.initializer(KaimingUniform(a=math.sqrt(5)), | |||
cell.weight.shape, | |||
cell.weight.dtype)) | |||
if cell.bias is not None: | |||
fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight) | |||
bound = 1 / math.sqrt(fan_in) | |||
cell.bias.set_data(init.initializer(init.Uniform(bound), | |||
cell.bias.shape, | |||
cell.bias.dtype)) | |||
elif isinstance(cell, nn.Dense): | |||
cell.weight.set_data(init.initializer(KaimingUniform(a=math.sqrt(5)), | |||
cell.weight.shape, | |||
cell.weight.dtype)) | |||
if cell.bias is not None: | |||
fan_in, _ = _calculate_fan_in_and_fan_out(cell.weight) | |||
bound = 1 / math.sqrt(fan_in) | |||
cell.bias.set_data(init.initializer(init.Uniform(bound), | |||
cell.bias.shape, | |||
cell.bias.dtype)) | |||
elif isinstance(cell, (nn.BatchNorm2d, nn.BatchNorm1d)): | |||
pass | |||
def load_yolov3_params(args, network): | |||
"""Load yolov3 darknet parameter from checkpoint.""" | |||
if args.pretrained_backbone: | |||
network = load_backbone(network, args.pretrained_backbone, args) | |||
args.logger.info('load pre-trained backbone {} into network'.format(args.pretrained_backbone)) | |||
else: | |||
args.logger.info('Not load pre-trained backbone, please be careful') | |||
if args.resume_yolov3: | |||
param_dict = load_checkpoint(args.resume_yolov3) | |||
param_dict_new = {} | |||
for key, values in param_dict.items(): | |||
if key.startswith('moments.'): | |||
continue | |||
elif key.startswith('yolo_network.'): | |||
param_dict_new[key[13:]] = values | |||
args.logger.info('in resume {}'.format(key)) | |||
else: | |||
param_dict_new[key] = values | |||
args.logger.info('in resume {}'.format(key)) | |||
args.logger.info('resume finished') | |||
load_param_into_net(network, param_dict_new) | |||
args.logger.info('load_model {} success'.format(args.resume_yolov3)) |
@@ -0,0 +1,80 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Custom Logger.""" | |||
import os | |||
import sys | |||
import logging | |||
from datetime import datetime | |||
class LOGGER(logging.Logger): | |||
""" | |||
Logger. | |||
Args: | |||
logger_name: String. Logger name. | |||
rank: Integer. Rank id. | |||
""" | |||
def __init__(self, logger_name, rank=0): | |||
super(LOGGER, self).__init__(logger_name) | |||
self.rank = rank | |||
if rank % 8 == 0: | |||
console = logging.StreamHandler(sys.stdout) | |||
console.setLevel(logging.INFO) | |||
formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') | |||
console.setFormatter(formatter) | |||
self.addHandler(console) | |||
def setup_logging_file(self, log_dir, rank=0): | |||
"""Setup logging file.""" | |||
self.rank = rank | |||
if not os.path.exists(log_dir): | |||
os.makedirs(log_dir, exist_ok=True) | |||
log_name = datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S') + '_rank_{}.log'.format(rank) | |||
self.log_fn = os.path.join(log_dir, log_name) | |||
fh = logging.FileHandler(self.log_fn) | |||
fh.setLevel(logging.INFO) | |||
formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') | |||
fh.setFormatter(formatter) | |||
self.addHandler(fh) | |||
def info(self, msg, *args, **kwargs): | |||
if self.isEnabledFor(logging.INFO): | |||
self._log(logging.INFO, msg, args, **kwargs) | |||
def save_args(self, args): | |||
self.info('Args:') | |||
args_dict = vars(args) | |||
for key in args_dict.keys(): | |||
self.info('--> %s: %s', key, args_dict[key]) | |||
self.info('') | |||
def important_info(self, msg, *args, **kwargs): | |||
if self.isEnabledFor(logging.INFO) and self.rank == 0: | |||
line_width = 2 | |||
important_msg = '\n' | |||
important_msg += ('*'*70 + '\n')*line_width | |||
important_msg += ('*'*line_width + '\n')*2 | |||
important_msg += '*'*line_width + ' '*8 + msg + '\n' | |||
important_msg += ('*'*line_width + '\n')*2 | |||
important_msg += ('*'*70 + '\n')*line_width | |||
self.info(important_msg, *args, **kwargs) | |||
def get_logger(path, rank): | |||
"""Get Logger.""" | |||
logger = LOGGER('yolov3_darknet53', rank) | |||
logger.setup_logging_file(path, rank) | |||
return logger |
@@ -0,0 +1,70 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""YOLOV3 loss.""" | |||
from mindspore.ops import operations as P | |||
import mindspore.nn as nn | |||
class XYLoss(nn.Cell): | |||
"""Loss for x and y.""" | |||
def __init__(self): | |||
super(XYLoss, self).__init__() | |||
self.cross_entropy = P.SigmoidCrossEntropyWithLogits() | |||
self.reduce_sum = P.ReduceSum() | |||
def construct(self, object_mask, box_loss_scale, predict_xy, true_xy): | |||
xy_loss = object_mask * box_loss_scale * self.cross_entropy(predict_xy, true_xy) | |||
xy_loss = self.reduce_sum(xy_loss, ()) | |||
return xy_loss | |||
class WHLoss(nn.Cell): | |||
"""Loss for w and h.""" | |||
def __init__(self): | |||
super(WHLoss, self).__init__() | |||
self.square = P.Square() | |||
self.reduce_sum = P.ReduceSum() | |||
def construct(self, object_mask, box_loss_scale, predict_wh, true_wh): | |||
wh_loss = object_mask * box_loss_scale * 0.5 * P.Square()(true_wh - predict_wh) | |||
wh_loss = self.reduce_sum(wh_loss, ()) | |||
return wh_loss | |||
class ConfidenceLoss(nn.Cell): | |||
"""Loss for confidence.""" | |||
def __init__(self): | |||
super(ConfidenceLoss, self).__init__() | |||
self.cross_entropy = P.SigmoidCrossEntropyWithLogits() | |||
self.reduce_sum = P.ReduceSum() | |||
def construct(self, object_mask, predict_confidence, ignore_mask): | |||
confidence_loss = self.cross_entropy(predict_confidence, object_mask) | |||
confidence_loss = object_mask * confidence_loss + (1 - object_mask) * confidence_loss * ignore_mask | |||
confidence_loss = self.reduce_sum(confidence_loss, ()) | |||
return confidence_loss | |||
class ClassLoss(nn.Cell): | |||
"""Loss for classification.""" | |||
def __init__(self): | |||
super(ClassLoss, self).__init__() | |||
self.cross_entropy = P.SigmoidCrossEntropyWithLogits() | |||
self.reduce_sum = P.ReduceSum() | |||
def construct(self, object_mask, predict_class, class_probs): | |||
class_loss = object_mask * self.cross_entropy(predict_class, class_probs) | |||
class_loss = self.reduce_sum(class_loss, ()) | |||
return class_loss |
@@ -0,0 +1,182 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Learning rate scheduler.""" | |||
import math | |||
from collections import Counter | |||
import numpy as np | |||
# pylint: disable=locally-disables, invalid-name | |||
def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr): | |||
"""Linear learning rate.""" | |||
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps) | |||
lr = float(init_lr) + lr_inc * current_step | |||
return lr | |||
def warmup_step_lr(lr, lr_epochs, steps_per_epoch, warmup_epochs, max_epoch, gamma=0.1): | |||
"""Warmup step learning rate.""" | |||
base_lr = lr | |||
warmup_init_lr = 0 | |||
total_steps = int(max_epoch * steps_per_epoch) | |||
warmup_steps = int(warmup_epochs * steps_per_epoch) | |||
milestones = lr_epochs | |||
milestones_steps = [] | |||
for milestone in milestones: | |||
milestones_step = milestone * steps_per_epoch | |||
milestones_steps.append(milestones_step) | |||
lr_each_step = [] | |||
lr = base_lr | |||
milestones_steps_counter = Counter(milestones_steps) | |||
for i in range(total_steps): | |||
if i < warmup_steps: | |||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) | |||
else: | |||
lr = lr * gamma**milestones_steps_counter[i] | |||
lr_each_step.append(lr) | |||
return np.array(lr_each_step).astype(np.float32) | |||
def multi_step_lr(lr, milestones, steps_per_epoch, max_epoch, gamma=0.1): | |||
return warmup_step_lr(lr, milestones, steps_per_epoch, 0, max_epoch, gamma=gamma) | |||
def step_lr(lr, epoch_size, steps_per_epoch, max_epoch, gamma=0.1): | |||
lr_epochs = [] | |||
for i in range(1, max_epoch): | |||
if i % epoch_size == 0: | |||
lr_epochs.append(i) | |||
return multi_step_lr(lr, lr_epochs, steps_per_epoch, max_epoch, gamma=gamma) | |||
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0): | |||
"""Cosine annealing learning rate.""" | |||
base_lr = lr | |||
warmup_init_lr = 0 | |||
total_steps = int(max_epoch * steps_per_epoch) | |||
warmup_steps = int(warmup_epochs * steps_per_epoch) | |||
lr_each_step = [] | |||
for i in range(total_steps): | |||
last_epoch = i // steps_per_epoch | |||
if i < warmup_steps: | |||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) | |||
else: | |||
lr = eta_min + (base_lr - eta_min) * (1. + math.cos(math.pi*last_epoch / T_max)) / 2 | |||
lr_each_step.append(lr) | |||
return np.array(lr_each_step).astype(np.float32) | |||
def warmup_cosine_annealing_lr_V2(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0): | |||
"""Cosine annealing learning rate V2.""" | |||
base_lr = lr | |||
warmup_init_lr = 0 | |||
total_steps = int(max_epoch * steps_per_epoch) | |||
warmup_steps = int(warmup_epochs * steps_per_epoch) | |||
last_lr = 0 | |||
last_epoch_V1 = 0 | |||
T_max_V2 = int(max_epoch*1/3) | |||
lr_each_step = [] | |||
for i in range(total_steps): | |||
last_epoch = i // steps_per_epoch | |||
if i < warmup_steps: | |||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) | |||
else: | |||
if i < total_steps*2/3: | |||
lr = eta_min + (base_lr - eta_min) * (1. + math.cos(math.pi*last_epoch / T_max)) / 2 | |||
last_lr = lr | |||
last_epoch_V1 = last_epoch | |||
else: | |||
base_lr = last_lr | |||
last_epoch = last_epoch-last_epoch_V1 | |||
lr = eta_min + (base_lr - eta_min) * (1. + math.cos(math.pi * last_epoch / T_max_V2)) / 2 | |||
lr_each_step.append(lr) | |||
return np.array(lr_each_step).astype(np.float32) | |||
def warmup_cosine_annealing_lr_sample(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0): | |||
"""Warmup cosine annealing learning rate.""" | |||
start_sample_epoch = 60 | |||
step_sample = 2 | |||
tobe_sampled_epoch = 60 | |||
end_sampled_epoch = start_sample_epoch + step_sample*tobe_sampled_epoch | |||
max_sampled_epoch = max_epoch+tobe_sampled_epoch | |||
T_max = max_sampled_epoch | |||
base_lr = lr | |||
warmup_init_lr = 0 | |||
total_steps = int(max_epoch * steps_per_epoch) | |||
total_sampled_steps = int(max_sampled_epoch * steps_per_epoch) | |||
warmup_steps = int(warmup_epochs * steps_per_epoch) | |||
lr_each_step = [] | |||
for i in range(total_sampled_steps): | |||
last_epoch = i // steps_per_epoch | |||
if last_epoch in range(start_sample_epoch, end_sampled_epoch, step_sample): | |||
continue | |||
if i < warmup_steps: | |||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) | |||
else: | |||
lr = eta_min + (base_lr - eta_min) * (1. + math.cos(math.pi*last_epoch / T_max)) / 2 | |||
lr_each_step.append(lr) | |||
assert total_steps == len(lr_each_step) | |||
return np.array(lr_each_step).astype(np.float32) | |||
def get_lr(args): | |||
"""generate learning rate.""" | |||
if args.lr_scheduler == 'exponential': | |||
lr = warmup_step_lr(args.lr, | |||
args.lr_epochs, | |||
args.steps_per_epoch, | |||
args.warmup_epochs, | |||
args.max_epoch, | |||
gamma=args.lr_gamma, | |||
) | |||
elif args.lr_scheduler == 'cosine_annealing': | |||
lr = warmup_cosine_annealing_lr(args.lr, | |||
args.steps_per_epoch, | |||
args.warmup_epochs, | |||
args.max_epoch, | |||
args.T_max, | |||
args.eta_min) | |||
elif args.lr_scheduler == 'cosine_annealing_V2': | |||
lr = warmup_cosine_annealing_lr_V2(args.lr, | |||
args.steps_per_epoch, | |||
args.warmup_epochs, | |||
args.max_epoch, | |||
args.T_max, | |||
args.eta_min) | |||
elif args.lr_scheduler == 'cosine_annealing_sample': | |||
lr = warmup_cosine_annealing_lr_sample(args.lr, | |||
args.steps_per_epoch, | |||
args.warmup_epochs, | |||
args.max_epoch, | |||
args.T_max, | |||
args.eta_min) | |||
else: | |||
raise NotImplementedError(args.lr_scheduler) | |||
return lr |
@@ -0,0 +1,595 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Preprocess dataset.""" | |||
import random | |||
import threading | |||
import copy | |||
import numpy as np | |||
from PIL import Image | |||
import cv2 | |||
# pylint: disable=locally-disables, unused-argument, invalid-name | |||
def _rand(a=0., b=1.): | |||
return np.random.rand() * (b - a) + a | |||
def bbox_iou(bbox_a, bbox_b, offset=0): | |||
"""Calculate Intersection-Over-Union(IOU) of two bounding boxes. | |||
Parameters | |||
---------- | |||
bbox_a : numpy.ndarray | |||
An ndarray with shape :math:`(N, 4)`. | |||
bbox_b : numpy.ndarray | |||
An ndarray with shape :math:`(M, 4)`. | |||
offset : float or int, default is 0 | |||
The ``offset`` is used to control the whether the width(or height) is computed as | |||
(right - left + ``offset``). | |||
Note that the offset must be 0 for normalized bboxes, whose ranges are in ``[0, 1]``. | |||
Returns | |||
------- | |||
numpy.ndarray | |||
An ndarray with shape :math:`(N, M)` indicates IOU between each pairs of | |||
bounding boxes in `bbox_a` and `bbox_b`. | |||
""" | |||
if bbox_a.shape[1] < 4 or bbox_b.shape[1] < 4: | |||
raise IndexError("Bounding boxes axis 1 must have at least length 4") | |||
tl = np.maximum(bbox_a[:, None, :2], bbox_b[:, :2]) | |||
br = np.minimum(bbox_a[:, None, 2:4], bbox_b[:, 2:4]) | |||
area_i = np.prod(br - tl + offset, axis=2) * (tl < br).all(axis=2) | |||
area_a = np.prod(bbox_a[:, 2:4] - bbox_a[:, :2] + offset, axis=1) | |||
area_b = np.prod(bbox_b[:, 2:4] - bbox_b[:, :2] + offset, axis=1) | |||
return area_i / (area_a[:, None] + area_b - area_i) | |||
def statistic_normalize_img(img, statistic_norm): | |||
"""Statistic normalize images.""" | |||
# img: RGB | |||
if isinstance(img, Image.Image): | |||
img = np.array(img) | |||
img = img/255. | |||
mean = np.array([0.485, 0.456, 0.406]) | |||
std = np.array([0.229, 0.224, 0.225]) | |||
if statistic_norm: | |||
img = (img - mean) / std | |||
return img | |||
def get_interp_method(interp, sizes=()): | |||
""" | |||
Get the interpolation method for resize functions. | |||
The major purpose of this function is to wrap a random interp method selection | |||
and a auto-estimation method. | |||
Note: | |||
When shrinking an image, it will generally look best with AREA-based | |||
interpolation, whereas, when enlarging an image, it will generally look best | |||
with Bicubic or Bilinear. | |||
Args: | |||
interp (int): Interpolation method for all resizing operations. | |||
- 0: Nearest Neighbors Interpolation. | |||
- 1: Bilinear interpolation. | |||
- 2: Bicubic interpolation over 4x4 pixel neighborhood. | |||
- 3: Nearest Neighbors. Originally it should be Area-based, as we cannot find Area-based, | |||
so we use NN instead. Area-based (resampling using pixel area relation). | |||
It may be a preferred method for image decimation, as it gives moire-free results. | |||
But when the image is zoomed, it is similar to the Nearest Neighbors method. (used by default). | |||
- 4: Lanczos interpolation over 8x8 pixel neighborhood. | |||
- 9: Cubic for enlarge, area for shrink, bilinear for others. | |||
- 10: Random select from interpolation method mentioned above. | |||
sizes (tuple): Format should like (old_height, old_width, new_height, new_width), | |||
if None provided, auto(9) will return Area(2) anyway. Default: () | |||
Returns: | |||
int, interp method from 0 to 4. | |||
""" | |||
if interp == 9: | |||
if sizes: | |||
assert len(sizes) == 4 | |||
oh, ow, nh, nw = sizes | |||
if nh > oh and nw > ow: | |||
return 2 | |||
if nh < oh and nw < ow: | |||
return 0 | |||
return 1 | |||
return 2 | |||
if interp == 10: | |||
return random.randint(0, 4) | |||
if interp not in (0, 1, 2, 3, 4): | |||
raise ValueError('Unknown interp method %d' % interp) | |||
return interp | |||
def pil_image_reshape(interp): | |||
"""Reshape pil image.""" | |||
reshape_type = { | |||
0: Image.NEAREST, | |||
1: Image.BILINEAR, | |||
2: Image.BICUBIC, | |||
3: Image.NEAREST, | |||
4: Image.LANCZOS, | |||
} | |||
return reshape_type[interp] | |||
def _preprocess_true_boxes(true_boxes, anchors, in_shape, num_classes, | |||
max_boxes, label_smooth, label_smooth_factor=0.1): | |||
"""Preprocess annotation boxes.""" | |||
anchors = np.array(anchors) | |||
num_layers = anchors.shape[0] // 3 | |||
anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] | |||
true_boxes = np.array(true_boxes, dtype='float32') | |||
input_shape = np.array(in_shape, dtype='int32') | |||
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2. | |||
# trans to box center point | |||
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2] | |||
# input_shape is [h, w] | |||
true_boxes[..., 0:2] = boxes_xy / input_shape[::-1] | |||
true_boxes[..., 2:4] = boxes_wh / input_shape[::-1] | |||
# true_boxes [x, y, w, h] | |||
grid_shapes = [input_shape // 32, input_shape // 16, input_shape // 8] | |||
# grid_shape [h, w] | |||
y_true = [np.zeros((grid_shapes[l][0], grid_shapes[l][1], len(anchor_mask[l]), | |||
5 + num_classes), dtype='float32') for l in range(num_layers)] | |||
# y_true [gridy, gridx] | |||
anchors = np.expand_dims(anchors, 0) | |||
anchors_max = anchors / 2. | |||
anchors_min = -anchors_max | |||
valid_mask = boxes_wh[..., 0] > 0 | |||
wh = boxes_wh[valid_mask] | |||
if wh.size > 0: | |||
wh = np.expand_dims(wh, -2) | |||
boxes_max = wh / 2. | |||
boxes_min = -boxes_max | |||
intersect_min = np.maximum(boxes_min, anchors_min) | |||
intersect_max = np.minimum(boxes_max, anchors_max) | |||
intersect_wh = np.maximum(intersect_max - intersect_min, 0.) | |||
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1] | |||
box_area = wh[..., 0] * wh[..., 1] | |||
anchor_area = anchors[..., 0] * anchors[..., 1] | |||
iou = intersect_area / (box_area + anchor_area - intersect_area) | |||
best_anchor = np.argmax(iou, axis=-1) | |||
for t, n in enumerate(best_anchor): | |||
for l in range(num_layers): | |||
if n in anchor_mask[l]: | |||
i = np.floor(true_boxes[t, 0] * grid_shapes[l][1]).astype('int32') # grid_y | |||
j = np.floor(true_boxes[t, 1] * grid_shapes[l][0]).astype('int32') # grid_x | |||
k = anchor_mask[l].index(n) | |||
c = true_boxes[t, 4].astype('int32') | |||
y_true[l][j, i, k, 0:4] = true_boxes[t, 0:4] | |||
y_true[l][j, i, k, 4] = 1. | |||
# lable-smooth | |||
if label_smooth: | |||
sigma = label_smooth_factor/(num_classes-1) | |||
y_true[l][j, i, k, 5:] = sigma | |||
y_true[l][j, i, k, 5+c] = 1-label_smooth_factor | |||
else: | |||
y_true[l][j, i, k, 5 + c] = 1. | |||
# pad_gt_boxes for avoiding dynamic shape | |||
pad_gt_box0 = np.zeros(shape=[max_boxes, 4], dtype=np.float32) | |||
pad_gt_box1 = np.zeros(shape=[max_boxes, 4], dtype=np.float32) | |||
pad_gt_box2 = np.zeros(shape=[max_boxes, 4], dtype=np.float32) | |||
mask0 = np.reshape(y_true[0][..., 4:5], [-1]) | |||
gt_box0 = np.reshape(y_true[0][..., 0:4], [-1, 4]) | |||
# gt_box [boxes, [x,y,w,h]] | |||
gt_box0 = gt_box0[mask0 == 1] | |||
# gt_box0: get all boxes which have object | |||
pad_gt_box0[:gt_box0.shape[0]] = gt_box0 | |||
# gt_box0.shape[0]: total number of boxes in gt_box0 | |||
# top N of pad_gt_box0 is real box, and after are pad by zero | |||
mask1 = np.reshape(y_true[1][..., 4:5], [-1]) | |||
gt_box1 = np.reshape(y_true[1][..., 0:4], [-1, 4]) | |||
gt_box1 = gt_box1[mask1 == 1] | |||
pad_gt_box1[:gt_box1.shape[0]] = gt_box1 | |||
mask2 = np.reshape(y_true[2][..., 4:5], [-1]) | |||
gt_box2 = np.reshape(y_true[2][..., 0:4], [-1, 4]) | |||
gt_box2 = gt_box2[mask2 == 1] | |||
pad_gt_box2[:gt_box2.shape[0]] = gt_box2 | |||
return y_true[0], y_true[1], y_true[2], pad_gt_box0, pad_gt_box1, pad_gt_box2 | |||
def _reshape_data(image, image_size): | |||
"""Reshape image.""" | |||
if not isinstance(image, Image.Image): | |||
image = Image.fromarray(image) | |||
ori_w, ori_h = image.size | |||
ori_image_shape = np.array([ori_w, ori_h], np.int32) | |||
# original image shape fir:H sec:W | |||
h, w = image_size | |||
interp = get_interp_method(interp=9, sizes=(ori_h, ori_w, h, w)) | |||
image = image.resize((w, h), pil_image_reshape(interp)) | |||
image_data = statistic_normalize_img(image, statistic_norm=True) | |||
if len(image_data.shape) == 2: | |||
image_data = np.expand_dims(image_data, axis=-1) | |||
image_data = np.concatenate([image_data, image_data, image_data], axis=-1) | |||
image_data = image_data.astype(np.float32) | |||
return image_data, ori_image_shape | |||
def color_distortion(img, hue, sat, val, device_num): | |||
"""Color distortion.""" | |||
hue = _rand(-hue, hue) | |||
sat = _rand(1, sat) if _rand() < .5 else 1 / _rand(1, sat) | |||
val = _rand(1, val) if _rand() < .5 else 1 / _rand(1, val) | |||
if device_num != 1: | |||
cv2.setNumThreads(1) | |||
x = cv2.cvtColor(img, cv2.COLOR_RGB2HSV_FULL) | |||
x = x / 255. | |||
x[..., 0] += hue | |||
x[..., 0][x[..., 0] > 1] -= 1 | |||
x[..., 0][x[..., 0] < 0] += 1 | |||
x[..., 1] *= sat | |||
x[..., 2] *= val | |||
x[x > 1] = 1 | |||
x[x < 0] = 0 | |||
x = x * 255. | |||
x = x.astype(np.uint8) | |||
image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB_FULL) | |||
return image_data | |||
def filp_pil_image(img): | |||
return img.transpose(Image.FLIP_LEFT_RIGHT) | |||
def convert_gray_to_color(img): | |||
if len(img.shape) == 2: | |||
img = np.expand_dims(img, axis=-1) | |||
img = np.concatenate([img, img, img], axis=-1) | |||
return img | |||
def _is_iou_satisfied_constraint(min_iou, max_iou, box, crop_box): | |||
iou = bbox_iou(box, crop_box) | |||
return min_iou <= iou.min() and max_iou >= iou.max() | |||
def _choose_candidate_by_constraints(max_trial, input_w, input_h, image_w, image_h, jitter, box, use_constraints): | |||
"""Choose candidate by constraints.""" | |||
if use_constraints: | |||
constraints = ( | |||
(0.1, None), | |||
(0.3, None), | |||
(0.5, None), | |||
(0.7, None), | |||
(0.9, None), | |||
(None, 1), | |||
) | |||
else: | |||
constraints = ( | |||
(None, None), | |||
) | |||
# add default candidate | |||
candidates = [(0, 0, input_w, input_h)] | |||
for constraint in constraints: | |||
min_iou, max_iou = constraint | |||
min_iou = -np.inf if min_iou is None else min_iou | |||
max_iou = np.inf if max_iou is None else max_iou | |||
for _ in range(max_trial): | |||
# box_data should have at least one box | |||
new_ar = float(input_w) / float(input_h) * _rand(1 - jitter, 1 + jitter) / _rand(1 - jitter, 1 + jitter) | |||
scale = _rand(0.25, 2) | |||
if new_ar < 1: | |||
nh = int(scale * input_h) | |||
nw = int(nh * new_ar) | |||
else: | |||
nw = int(scale * input_w) | |||
nh = int(nw / new_ar) | |||
dx = int(_rand(0, input_w - nw)) | |||
dy = int(_rand(0, input_h - nh)) | |||
if box.size > 0: | |||
t_box = copy.deepcopy(box) | |||
t_box[:, [0, 2]] = t_box[:, [0, 2]] * float(nw) / float(image_w) + dx | |||
t_box[:, [1, 3]] = t_box[:, [1, 3]] * float(nh) / float(image_h) + dy | |||
crop_box = np.array((0, 0, input_w, input_h)) | |||
if not _is_iou_satisfied_constraint(min_iou, max_iou, t_box, crop_box[np.newaxis]): | |||
continue | |||
else: | |||
candidates.append((dx, dy, nw, nh)) | |||
else: | |||
raise Exception("!!! annotation box is less than 1") | |||
return candidates | |||
def _correct_bbox_by_candidates(candidates, input_w, input_h, image_w, | |||
image_h, flip, box, box_data, allow_outside_center): | |||
"""Calculate correct boxes.""" | |||
while candidates: | |||
if len(candidates) > 1: | |||
# ignore default candidate which do not crop | |||
candidate = candidates.pop(np.random.randint(1, len(candidates))) | |||
else: | |||
candidate = candidates.pop(np.random.randint(0, len(candidates))) | |||
dx, dy, nw, nh = candidate | |||
t_box = copy.deepcopy(box) | |||
t_box[:, [0, 2]] = t_box[:, [0, 2]] * float(nw) / float(image_w) + dx | |||
t_box[:, [1, 3]] = t_box[:, [1, 3]] * float(nh) / float(image_h) + dy | |||
if flip: | |||
t_box[:, [0, 2]] = input_w - t_box[:, [2, 0]] | |||
if allow_outside_center: | |||
pass | |||
else: | |||
t_box = t_box[np.logical_and((t_box[:, 0] + t_box[:, 2])/2. >= 0., (t_box[:, 1] + t_box[:, 3])/2. >= 0.)] | |||
t_box = t_box[np.logical_and((t_box[:, 0] + t_box[:, 2]) / 2. <= input_w, | |||
(t_box[:, 1] + t_box[:, 3]) / 2. <= input_h)] | |||
# recorrect x, y for case x,y < 0 reset to zero, after dx and dy, some box can smaller than zero | |||
t_box[:, 0:2][t_box[:, 0:2] < 0] = 0 | |||
# recorrect w,h not higher than input size | |||
t_box[:, 2][t_box[:, 2] > input_w] = input_w | |||
t_box[:, 3][t_box[:, 3] > input_h] = input_h | |||
box_w = t_box[:, 2] - t_box[:, 0] | |||
box_h = t_box[:, 3] - t_box[:, 1] | |||
# discard invalid box: w or h smaller than 1 pixel | |||
t_box = t_box[np.logical_and(box_w > 1, box_h > 1)] | |||
if t_box.shape[0] > 0: | |||
# break if number of find t_box | |||
box_data[: len(t_box)] = t_box | |||
return box_data, candidate | |||
raise Exception('all candidates can not satisfied re-correct bbox') | |||
def _data_aug(image, box, jitter, hue, sat, val, image_input_size, max_boxes, | |||
anchors, num_classes, max_trial=10, device_num=1): | |||
"""Crop an image randomly with bounding box constraints. | |||
This data augmentation is used in training of | |||
Single Shot Multibox Detector [#]_. More details can be found in | |||
data augmentation section of the original paper. | |||
.. [#] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, | |||
Scott Reed, Cheng-Yang Fu, Alexander C. Berg. | |||
SSD: Single Shot MultiBox Detector. ECCV 2016.""" | |||
if not isinstance(image, Image.Image): | |||
image = Image.fromarray(image) | |||
image_w, image_h = image.size | |||
input_h, input_w = image_input_size | |||
np.random.shuffle(box) | |||
if len(box) > max_boxes: | |||
box = box[:max_boxes] | |||
flip = _rand() < .5 | |||
box_data = np.zeros((max_boxes, 5)) | |||
candidates = _choose_candidate_by_constraints(use_constraints=False, | |||
max_trial=max_trial, | |||
input_w=input_w, | |||
input_h=input_h, | |||
image_w=image_w, | |||
image_h=image_h, | |||
jitter=jitter, | |||
box=box) | |||
box_data, candidate = _correct_bbox_by_candidates(candidates=candidates, | |||
input_w=input_w, | |||
input_h=input_h, | |||
image_w=image_w, | |||
image_h=image_h, | |||
flip=flip, | |||
box=box, | |||
box_data=box_data, | |||
allow_outside_center=True) | |||
dx, dy, nw, nh = candidate | |||
interp = get_interp_method(interp=10) | |||
image = image.resize((nw, nh), pil_image_reshape(interp)) | |||
# place image, gray color as back graoud | |||
new_image = Image.new('RGB', (input_w, input_h), (128, 128, 128)) | |||
new_image.paste(image, (dx, dy)) | |||
image = new_image | |||
if flip: | |||
image = filp_pil_image(image) | |||
image = np.array(image) | |||
image = convert_gray_to_color(image) | |||
image_data = color_distortion(image, hue, sat, val, device_num) | |||
image_data = statistic_normalize_img(image_data, statistic_norm=True) | |||
image_data = image_data.astype(np.float32) | |||
return image_data, box_data | |||
def preprocess_fn(image, box, config, input_size, device_num): | |||
"""Preprocess data function.""" | |||
config_anchors = config.anchor_scales | |||
anchors = np.array([list(x) for x in config_anchors]) | |||
max_boxes = config.max_box | |||
num_classes = config.num_classes | |||
jitter = config.jitter | |||
hue = config.hue | |||
sat = config.saturation | |||
val = config.value | |||
image, anno = _data_aug(image, box, jitter=jitter, hue=hue, sat=sat, val=val, | |||
image_input_size=input_size, max_boxes=max_boxes, | |||
num_classes=num_classes, anchors=anchors, device_num=device_num) | |||
return image, anno | |||
def reshape_fn(image, img_id, config): | |||
input_size = config.test_img_shape | |||
image, ori_image_shape = _reshape_data(image, image_size=input_size) | |||
return image, ori_image_shape, img_id | |||
class MultiScaleTrans: | |||
"""Multi scale transform.""" | |||
def __init__(self, config, device_num): | |||
self.config = config | |||
self.seed = 0 | |||
self.size_list = [] | |||
self.resize_rate = config.resize_rate | |||
self.dataset_size = config.dataset_size | |||
self.size_dict = {} | |||
self.seed_num = int(1e6) | |||
self.seed_list = self.generate_seed_list(seed_num=self.seed_num) | |||
self.resize_count_num = int(np.ceil(self.dataset_size / self.resize_rate)) | |||
self.device_num = device_num | |||
self.anchor_scales = config.anchor_scales | |||
self.num_classes = config.num_classes | |||
self.max_box = config.max_box | |||
self.label_smooth = config.label_smooth | |||
self.label_smooth_factor = config.label_smooth_factor | |||
def generate_seed_list(self, init_seed=1234, seed_num=int(1e6), seed_range=(1, 1000)): | |||
seed_list = [] | |||
random.seed(init_seed) | |||
for _ in range(seed_num): | |||
seed = random.randint(seed_range[0], seed_range[1]) | |||
seed_list.append(seed) | |||
return seed_list | |||
def __call__(self, imgs, annos, x1, x2, x3, x4, x5, x6, batchInfo): | |||
epoch_num = batchInfo.get_epoch_num() | |||
size_idx = int(batchInfo.get_batch_num() / self.resize_rate) | |||
seed_key = self.seed_list[(epoch_num * self.resize_count_num + size_idx) % self.seed_num] | |||
ret_imgs = [] | |||
ret_annos = [] | |||
bbox1 = [] | |||
bbox2 = [] | |||
bbox3 = [] | |||
gt1 = [] | |||
gt2 = [] | |||
gt3 = [] | |||
if self.size_dict.get(seed_key, None) is None: | |||
random.seed(seed_key) | |||
new_size = random.choice(self.config.multi_scale) | |||
self.size_dict[seed_key] = new_size | |||
seed = seed_key | |||
input_size = self.size_dict[seed] | |||
for img, anno in zip(imgs, annos): | |||
img, anno = preprocess_fn(img, anno, self.config, input_size, self.device_num) | |||
ret_imgs.append(img.transpose(2, 0, 1).copy()) | |||
bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \ | |||
_preprocess_true_boxes(true_boxes=anno, anchors=self.anchor_scales, in_shape=img.shape[0:2], | |||
num_classes=self.num_classes, max_boxes=self.max_box, | |||
label_smooth=self.label_smooth, label_smooth_factor=self.label_smooth_factor) | |||
bbox1.append(bbox_true_1) | |||
bbox2.append(bbox_true_2) | |||
bbox3.append(bbox_true_3) | |||
gt1.append(gt_box1) | |||
gt2.append(gt_box2) | |||
gt3.append(gt_box3) | |||
ret_annos.append(0) | |||
return np.array(ret_imgs), np.array(ret_annos), np.array(bbox1), np.array(bbox2), np.array(bbox3), \ | |||
np.array(gt1), np.array(gt2), np.array(gt3) | |||
def thread_batch_preprocess_true_box(annos, config, input_shape, result_index, batch_bbox_true_1, batch_bbox_true_2, | |||
batch_bbox_true_3, batch_gt_box1, batch_gt_box2, batch_gt_box3): | |||
"""Preprocess true box for multi-thread.""" | |||
i = 0 | |||
for anno in annos: | |||
bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \ | |||
_preprocess_true_boxes(true_boxes=anno, anchors=config.anchor_scales, in_shape=input_shape, | |||
num_classes=config.num_classes, max_boxes=config.max_box, | |||
label_smooth=config.label_smooth, label_smooth_factor=config.label_smooth_factor) | |||
batch_bbox_true_1[result_index + i] = bbox_true_1 | |||
batch_bbox_true_2[result_index + i] = bbox_true_2 | |||
batch_bbox_true_3[result_index + i] = bbox_true_3 | |||
batch_gt_box1[result_index + i] = gt_box1 | |||
batch_gt_box2[result_index + i] = gt_box2 | |||
batch_gt_box3[result_index + i] = gt_box3 | |||
i = i + 1 | |||
def batch_preprocess_true_box(annos, config, input_shape): | |||
"""Preprocess true box with multi-thread.""" | |||
batch_bbox_true_1 = [] | |||
batch_bbox_true_2 = [] | |||
batch_bbox_true_3 = [] | |||
batch_gt_box1 = [] | |||
batch_gt_box2 = [] | |||
batch_gt_box3 = [] | |||
threads = [] | |||
step = 4 | |||
for index in range(0, len(annos), step): | |||
for _ in range(step): | |||
batch_bbox_true_1.append(None) | |||
batch_bbox_true_2.append(None) | |||
batch_bbox_true_3.append(None) | |||
batch_gt_box1.append(None) | |||
batch_gt_box2.append(None) | |||
batch_gt_box3.append(None) | |||
step_anno = annos[index: index + step] | |||
t = threading.Thread(target=thread_batch_preprocess_true_box, | |||
args=(step_anno, config, input_shape, index, batch_bbox_true_1, batch_bbox_true_2, | |||
batch_bbox_true_3, batch_gt_box1, batch_gt_box2, batch_gt_box3)) | |||
t.start() | |||
threads.append(t) | |||
for t in threads: | |||
t.join() | |||
return np.array(batch_bbox_true_1), np.array(batch_bbox_true_2), np.array(batch_bbox_true_3), \ | |||
np.array(batch_gt_box1), np.array(batch_gt_box2), np.array(batch_gt_box3) | |||
def batch_preprocess_true_box_single(annos, config, input_shape): | |||
"""Preprocess true boxes.""" | |||
batch_bbox_true_1 = [] | |||
batch_bbox_true_2 = [] | |||
batch_bbox_true_3 = [] | |||
batch_gt_box1 = [] | |||
batch_gt_box2 = [] | |||
batch_gt_box3 = [] | |||
for anno in annos: | |||
bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \ | |||
_preprocess_true_boxes(true_boxes=anno, anchors=config.anchor_scales, in_shape=input_shape, | |||
num_classes=config.num_classes, max_boxes=config.max_box, | |||
label_smooth=config.label_smooth, label_smooth_factor=config.label_smooth_factor) | |||
batch_bbox_true_1.append(bbox_true_1) | |||
batch_bbox_true_2.append(bbox_true_2) | |||
batch_bbox_true_3.append(bbox_true_3) | |||
batch_gt_box1.append(gt_box1) | |||
batch_gt_box2.append(gt_box2) | |||
batch_gt_box3.append(gt_box3) | |||
return np.array(batch_bbox_true_1), np.array(batch_bbox_true_2), np.array(batch_bbox_true_3), \ | |||
np.array(batch_gt_box1), np.array(batch_gt_box2), np.array(batch_gt_box3) |
@@ -0,0 +1,187 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""Util class or function.""" | |||
from mindspore.train.serialization import load_checkpoint | |||
import mindspore.nn as nn | |||
import mindspore.common.dtype as mstype | |||
from .yolo import YoloLossBlock | |||
class AverageMeter: | |||
"""Computes and stores the average and current value""" | |||
def __init__(self, name, fmt=':f', tb_writer=None): | |||
self.name = name | |||
self.fmt = fmt | |||
self.reset() | |||
self.tb_writer = tb_writer | |||
self.cur_step = 1 | |||
self.val = 0 | |||
self.avg = 0 | |||
self.sum = 0 | |||
self.count = 0 | |||
def reset(self): | |||
self.val = 0 | |||
self.avg = 0 | |||
self.sum = 0 | |||
self.count = 0 | |||
def update(self, val, n=1): | |||
self.val = val | |||
self.sum += val * n | |||
self.count += n | |||
self.avg = self.sum / self.count | |||
if self.tb_writer is not None: | |||
self.tb_writer.add_scalar(self.name, self.val, self.cur_step) | |||
self.cur_step += 1 | |||
def __str__(self): | |||
fmtstr = '{name}:{avg' + self.fmt + '}' | |||
return fmtstr.format(**self.__dict__) | |||
def load_backbone(net, ckpt_path, args): | |||
"""Load darknet53 backbone checkpoint.""" | |||
param_dict = load_checkpoint(ckpt_path) | |||
yolo_backbone_prefix = 'feature_map.backbone' | |||
darknet_backbone_prefix = 'network.backbone' | |||
find_param = [] | |||
not_found_param = [] | |||
net.init_parameters_data() | |||
for name, cell in net.cells_and_names(): | |||
if name.startswith(yolo_backbone_prefix): | |||
name = name.replace(yolo_backbone_prefix, darknet_backbone_prefix) | |||
if isinstance(cell, (nn.Conv2d, nn.Dense)): | |||
darknet_weight = '{}.weight'.format(name) | |||
darknet_bias = '{}.bias'.format(name) | |||
if darknet_weight in param_dict: | |||
cell.weight.set_data(param_dict[darknet_weight].data) | |||
find_param.append(darknet_weight) | |||
else: | |||
not_found_param.append(darknet_weight) | |||
if darknet_bias in param_dict: | |||
cell.bias.set_data(param_dict[darknet_bias].data) | |||
find_param.append(darknet_bias) | |||
else: | |||
not_found_param.append(darknet_bias) | |||
elif isinstance(cell, (nn.BatchNorm2d, nn.BatchNorm1d)): | |||
darknet_moving_mean = '{}.moving_mean'.format(name) | |||
darknet_moving_variance = '{}.moving_variance'.format(name) | |||
darknet_gamma = '{}.gamma'.format(name) | |||
darknet_beta = '{}.beta'.format(name) | |||
if darknet_moving_mean in param_dict: | |||
cell.moving_mean.set_data(param_dict[darknet_moving_mean].data) | |||
find_param.append(darknet_moving_mean) | |||
else: | |||
not_found_param.append(darknet_moving_mean) | |||
if darknet_moving_variance in param_dict: | |||
cell.moving_variance.set_data(param_dict[darknet_moving_variance].data) | |||
find_param.append(darknet_moving_variance) | |||
else: | |||
not_found_param.append(darknet_moving_variance) | |||
if darknet_gamma in param_dict: | |||
cell.gamma.set_data(param_dict[darknet_gamma].data) | |||
find_param.append(darknet_gamma) | |||
else: | |||
not_found_param.append(darknet_gamma) | |||
if darknet_beta in param_dict: | |||
cell.beta.set_data(param_dict[darknet_beta].data) | |||
find_param.append(darknet_beta) | |||
else: | |||
not_found_param.append(darknet_beta) | |||
args.logger.info('================found_param {}========='.format(len(find_param))) | |||
args.logger.info(find_param) | |||
args.logger.info('================not_found_param {}========='.format(len(not_found_param))) | |||
args.logger.info(not_found_param) | |||
args.logger.info('=====load {} successfully ====='.format(ckpt_path)) | |||
return net | |||
def default_wd_filter(x): | |||
"""default weight decay filter.""" | |||
parameter_name = x.name | |||
if parameter_name.endswith('.bias'): | |||
# all bias not using weight decay | |||
return False | |||
if parameter_name.endswith('.gamma'): | |||
# bn weight bias not using weight decay, be carefully for now x not include BN | |||
return False | |||
if parameter_name.endswith('.beta'): | |||
# bn weight bias not using weight decay, be carefully for now x not include BN | |||
return False | |||
return True | |||
def get_param_groups(network): | |||
"""Param groups for optimizer.""" | |||
decay_params = [] | |||
no_decay_params = [] | |||
for x in network.trainable_params(): | |||
parameter_name = x.name | |||
if parameter_name.endswith('.bias'): | |||
# all bias not using weight decay | |||
no_decay_params.append(x) | |||
elif parameter_name.endswith('.gamma'): | |||
# bn weight bias not using weight decay, be carefully for now x not include BN | |||
no_decay_params.append(x) | |||
elif parameter_name.endswith('.beta'): | |||
# bn weight bias not using weight decay, be carefully for now x not include BN | |||
no_decay_params.append(x) | |||
else: | |||
decay_params.append(x) | |||
return [{'params': no_decay_params, 'weight_decay': 0.0}, {'params': decay_params}] | |||
class ShapeRecord: | |||
"""Log image shape.""" | |||
def __init__(self): | |||
self.shape_record = { | |||
320: 0, | |||
352: 0, | |||
384: 0, | |||
416: 0, | |||
448: 0, | |||
480: 0, | |||
512: 0, | |||
544: 0, | |||
576: 0, | |||
608: 0, | |||
'total': 0 | |||
} | |||
def set(self, shape): | |||
if len(shape) > 1: | |||
shape = shape[0] | |||
shape = int(shape) | |||
self.shape_record[shape] += 1 | |||
self.shape_record['total'] += 1 | |||
def show(self, logger): | |||
for key in self.shape_record: | |||
rate = self.shape_record[key] / float(self.shape_record['total']) | |||
logger.info('shape {}: {:.2f}%'.format(key, rate*100)) | |||
def keep_loss_fp32(network): | |||
"""Keep loss of network with float32""" | |||
for _, cell in network.cells_and_names(): | |||
if isinstance(cell, (YoloLossBlock,)): | |||
cell.to_float(mstype.float32) |
@@ -0,0 +1,441 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""YOLOv3 based on DarkNet.""" | |||
import mindspore as ms | |||
import mindspore.nn as nn | |||
from mindspore.common.tensor import Tensor | |||
from mindspore import context | |||
from mindspore.context import ParallelMode | |||
from mindspore.parallel._auto_parallel_context import auto_parallel_context | |||
from mindspore.communication.management import get_group_size | |||
from mindspore.ops import operations as P | |||
from mindspore.ops import functional as F | |||
from mindspore.ops import composite as C | |||
from src.darknet import DarkNet, ResidualBlock | |||
from src.config import ConfigYOLOV3DarkNet53 | |||
from src.loss import XYLoss, WHLoss, ConfidenceLoss, ClassLoss | |||
# pylint: disable=locally-disables, missing-docstring, invalid-name | |||
def _conv_bn_relu(in_channel, | |||
out_channel, | |||
ksize, | |||
stride=1, | |||
padding=0, | |||
dilation=1, | |||
alpha=0.1, | |||
momentum=0.9, | |||
eps=1e-5, | |||
pad_mode="same"): | |||
"""Get a conv2d batchnorm and relu layer""" | |||
return nn.SequentialCell( | |||
[nn.Conv2d(in_channel, | |||
out_channel, | |||
kernel_size=ksize, | |||
stride=stride, | |||
padding=padding, | |||
dilation=dilation, | |||
pad_mode=pad_mode), | |||
nn.BatchNorm2d(out_channel, momentum=momentum, eps=eps), | |||
nn.LeakyReLU(alpha)] | |||
) | |||
class YoloBlock(nn.Cell): | |||
""" | |||
YoloBlock for YOLOv3. | |||
Args: | |||
in_channels: Integer. Input channel. | |||
out_chls: Interger. Middle channel. | |||
out_channels: Integer. Output channel. | |||
Returns: | |||
Tuple, tuple of output tensor,(f1,f2,f3). | |||
Examples: | |||
YoloBlock(1024, 512, 255) | |||
""" | |||
def __init__(self, in_channels, out_chls, out_channels): | |||
super(YoloBlock, self).__init__() | |||
out_chls_2 = out_chls*2 | |||
self.conv0 = _conv_bn_relu(in_channels, out_chls, ksize=1) | |||
self.conv1 = _conv_bn_relu(out_chls, out_chls_2, ksize=3) | |||
self.conv2 = _conv_bn_relu(out_chls_2, out_chls, ksize=1) | |||
self.conv3 = _conv_bn_relu(out_chls, out_chls_2, ksize=3) | |||
self.conv4 = _conv_bn_relu(out_chls_2, out_chls, ksize=1) | |||
self.conv5 = _conv_bn_relu(out_chls, out_chls_2, ksize=3) | |||
self.conv6 = nn.Conv2d(out_chls_2, out_channels, kernel_size=1, stride=1, has_bias=True) | |||
def construct(self, x): | |||
c1 = self.conv0(x) | |||
c2 = self.conv1(c1) | |||
c3 = self.conv2(c2) | |||
c4 = self.conv3(c3) | |||
c5 = self.conv4(c4) | |||
c6 = self.conv5(c5) | |||
out = self.conv6(c6) | |||
return c5, out | |||
class YOLOv3(nn.Cell): | |||
""" | |||
YOLOv3 Network. | |||
Note: | |||
backbone = darknet53 | |||
Args: | |||
backbone_shape: List. Darknet output channels shape. | |||
backbone: Cell. Backbone Network. | |||
out_channel: Interger. Output channel. | |||
Returns: | |||
Tensor, output tensor. | |||
Examples: | |||
YOLOv3(backbone_shape=[64, 128, 256, 512, 1024] | |||
backbone=darknet53(), | |||
out_channel=255) | |||
""" | |||
def __init__(self, backbone_shape, backbone, out_channel): | |||
super(YOLOv3, self).__init__() | |||
self.out_channel = out_channel | |||
self.backbone = backbone | |||
self.backblock0 = YoloBlock(backbone_shape[-1], out_chls=backbone_shape[-2], out_channels=out_channel) | |||
self.conv1 = _conv_bn_relu(in_channel=backbone_shape[-2], out_channel=backbone_shape[-2]//2, ksize=1) | |||
self.backblock1 = YoloBlock(in_channels=backbone_shape[-2]+backbone_shape[-3], | |||
out_chls=backbone_shape[-3], | |||
out_channels=out_channel) | |||
self.conv2 = _conv_bn_relu(in_channel=backbone_shape[-3], out_channel=backbone_shape[-3]//2, ksize=1) | |||
self.backblock2 = YoloBlock(in_channels=backbone_shape[-3]+backbone_shape[-4], | |||
out_chls=backbone_shape[-4], | |||
out_channels=out_channel) | |||
self.concat = P.Concat(axis=1) | |||
def construct(self, x): | |||
# input_shape of x is (batch_size, 3, h, w) | |||
# feature_map1 is (batch_size, backbone_shape[2], h/8, w/8) | |||
# feature_map2 is (batch_size, backbone_shape[3], h/16, w/16) | |||
# feature_map3 is (batch_size, backbone_shape[4], h/32, w/32) | |||
img_hight = P.Shape()(x)[2] | |||
img_width = P.Shape()(x)[3] | |||
feature_map1, feature_map2, feature_map3 = self.backbone(x) | |||
con1, big_object_output = self.backblock0(feature_map3) | |||
con1 = self.conv1(con1) | |||
ups1 = P.ResizeNearestNeighbor((img_hight / 16, img_width / 16))(con1) | |||
con1 = self.concat((ups1, feature_map2)) | |||
con2, medium_object_output = self.backblock1(con1) | |||
con2 = self.conv2(con2) | |||
ups2 = P.ResizeNearestNeighbor((img_hight / 8, img_width / 8))(con2) | |||
con3 = self.concat((ups2, feature_map1)) | |||
_, small_object_output = self.backblock2(con3) | |||
return big_object_output, medium_object_output, small_object_output | |||
class DetectionBlock(nn.Cell): | |||
""" | |||
YOLOv3 detection Network. It will finally output the detection result. | |||
Args: | |||
scale: Character. | |||
config: ConfigYOLOV3DarkNet53, Configuration instance. | |||
is_training: Bool, Whether train or not, default True. | |||
Returns: | |||
Tuple, tuple of output tensor,(f1,f2,f3). | |||
Examples: | |||
DetectionBlock(scale='l',stride=32) | |||
""" | |||
def __init__(self, scale, config=ConfigYOLOV3DarkNet53(), is_training=True): | |||
super(DetectionBlock, self).__init__() | |||
self.config = config | |||
if scale == 's': | |||
idx = (0, 1, 2) | |||
elif scale == 'm': | |||
idx = (3, 4, 5) | |||
elif scale == 'l': | |||
idx = (6, 7, 8) | |||
else: | |||
raise KeyError("Invalid scale value for DetectionBlock") | |||
self.anchors = Tensor([self.config.anchor_scales[i] for i in idx], ms.float32) | |||
self.num_anchors_per_scale = 3 | |||
self.num_attrib = 4+1+self.config.num_classes | |||
self.lambda_coord = 1 | |||
self.sigmoid = nn.Sigmoid() | |||
self.reshape = P.Reshape() | |||
self.tile = P.Tile() | |||
self.concat = P.Concat(axis=-1) | |||
self.conf_training = is_training | |||
def construct(self, x, input_shape): | |||
num_batch = P.Shape()(x)[0] | |||
grid_size = P.Shape()(x)[2:4] | |||
# Reshape and transpose the feature to [n, grid_size[0], grid_size[1], 3, num_attrib] | |||
prediction = P.Reshape()(x, (num_batch, | |||
self.num_anchors_per_scale, | |||
self.num_attrib, | |||
grid_size[0], | |||
grid_size[1])) | |||
prediction = P.Transpose()(prediction, (0, 3, 4, 1, 2)) | |||
range_x = range(grid_size[1]) | |||
range_y = range(grid_size[0]) | |||
grid_x = P.Cast()(F.tuple_to_array(range_x), ms.float32) | |||
grid_y = P.Cast()(F.tuple_to_array(range_y), ms.float32) | |||
# Tensor of shape [grid_size[0], grid_size[1], 1, 1] representing the coordinate of x/y axis for each grid | |||
# [batch, gridx, gridy, 1, 1] | |||
grid_x = self.tile(self.reshape(grid_x, (1, 1, -1, 1, 1)), (1, grid_size[0], 1, 1, 1)) | |||
grid_y = self.tile(self.reshape(grid_y, (1, -1, 1, 1, 1)), (1, 1, grid_size[1], 1, 1)) | |||
# Shape is [grid_size[0], grid_size[1], 1, 2] | |||
grid = self.concat((grid_x, grid_y)) | |||
box_xy = prediction[:, :, :, :, :2] | |||
box_wh = prediction[:, :, :, :, 2:4] | |||
box_confidence = prediction[:, :, :, :, 4:5] | |||
box_probs = prediction[:, :, :, :, 5:] | |||
# gridsize1 is x | |||
# gridsize0 is y | |||
box_xy = (self.sigmoid(box_xy) + grid) / P.Cast()(F.tuple_to_array((grid_size[1], grid_size[0])), ms.float32) | |||
# box_wh is w->h | |||
box_wh = P.Exp()(box_wh) * self.anchors / input_shape | |||
box_confidence = self.sigmoid(box_confidence) | |||
box_probs = self.sigmoid(box_probs) | |||
if self.conf_training: | |||
return grid, prediction, box_xy, box_wh | |||
return self.concat((box_xy, box_wh, box_confidence, box_probs)) | |||
class Iou(nn.Cell): | |||
"""Calculate the iou of boxes""" | |||
def __init__(self): | |||
super(Iou, self).__init__() | |||
self.min = P.Minimum() | |||
self.max = P.Maximum() | |||
def construct(self, box1, box2): | |||
# box1: pred_box [batch, gx, gy, anchors, 1, 4] ->4: [x_center, y_center, w, h] | |||
# box2: gt_box [batch, 1, 1, 1, maxbox, 4] | |||
# convert to topLeft and rightDown | |||
box1_xy = box1[:, :, :, :, :, :2] | |||
box1_wh = box1[:, :, :, :, :, 2:4] | |||
box1_mins = box1_xy - box1_wh / F.scalar_to_array(2.0) # topLeft | |||
box1_maxs = box1_xy + box1_wh / F.scalar_to_array(2.0) # rightDown | |||
box2_xy = box2[:, :, :, :, :, :2] | |||
box2_wh = box2[:, :, :, :, :, 2:4] | |||
box2_mins = box2_xy - box2_wh / F.scalar_to_array(2.0) | |||
box2_maxs = box2_xy + box2_wh / F.scalar_to_array(2.0) | |||
intersect_mins = self.max(box1_mins, box2_mins) | |||
intersect_maxs = self.min(box1_maxs, box2_maxs) | |||
intersect_wh = self.max(intersect_maxs - intersect_mins, F.scalar_to_array(0.0)) | |||
# P.squeeze: for effiecient slice | |||
intersect_area = P.Squeeze(-1)(intersect_wh[:, :, :, :, :, 0:1]) * \ | |||
P.Squeeze(-1)(intersect_wh[:, :, :, :, :, 1:2]) | |||
box1_area = P.Squeeze(-1)(box1_wh[:, :, :, :, :, 0:1]) * P.Squeeze(-1)(box1_wh[:, :, :, :, :, 1:2]) | |||
box2_area = P.Squeeze(-1)(box2_wh[:, :, :, :, :, 0:1]) * P.Squeeze(-1)(box2_wh[:, :, :, :, :, 1:2]) | |||
iou = intersect_area / (box1_area + box2_area - intersect_area) | |||
# iou : [batch, gx, gy, anchors, maxboxes] | |||
return iou | |||
class YoloLossBlock(nn.Cell): | |||
""" | |||
Loss block cell of YOLOV3 network. | |||
""" | |||
def __init__(self, scale, config=ConfigYOLOV3DarkNet53()): | |||
super(YoloLossBlock, self).__init__() | |||
self.config = config | |||
if scale == 's': | |||
# anchor mask | |||
idx = (0, 1, 2) | |||
elif scale == 'm': | |||
idx = (3, 4, 5) | |||
elif scale == 'l': | |||
idx = (6, 7, 8) | |||
else: | |||
raise KeyError("Invalid scale value for DetectionBlock") | |||
self.anchors = Tensor([self.config.anchor_scales[i] for i in idx], ms.float32) | |||
self.ignore_threshold = Tensor(self.config.ignore_threshold, ms.float32) | |||
self.concat = P.Concat(axis=-1) | |||
self.iou = Iou() | |||
self.reduce_max = P.ReduceMax(keep_dims=False) | |||
self.xy_loss = XYLoss() | |||
self.wh_loss = WHLoss() | |||
self.confidenceLoss = ConfidenceLoss() | |||
self.classLoss = ClassLoss() | |||
def construct(self, grid, prediction, pred_xy, pred_wh, y_true, gt_box, input_shape): | |||
# prediction : origin output from yolo | |||
# pred_xy: (sigmoid(xy)+grid)/grid_size | |||
# pred_wh: (exp(wh)*anchors)/input_shape | |||
# y_true : after normalize | |||
# gt_box: [batch, maxboxes, xyhw] after normalize | |||
object_mask = y_true[:, :, :, :, 4:5] | |||
class_probs = y_true[:, :, :, :, 5:] | |||
grid_shape = P.Shape()(prediction)[1:3] | |||
grid_shape = P.Cast()(F.tuple_to_array(grid_shape[::-1]), ms.float32) | |||
pred_boxes = self.concat((pred_xy, pred_wh)) | |||
true_xy = y_true[:, :, :, :, :2] * grid_shape - grid | |||
true_wh = y_true[:, :, :, :, 2:4] | |||
true_wh = P.Select()(P.Equal()(true_wh, 0.0), | |||
P.Fill()(P.DType()(true_wh), | |||
P.Shape()(true_wh), 1.0), | |||
true_wh) | |||
true_wh = P.Log()(true_wh / self.anchors * input_shape) | |||
# 2-w*h for large picture, use small scale, since small obj need more precise | |||
box_loss_scale = 2 - y_true[:, :, :, :, 2:3] * y_true[:, :, :, :, 3:4] | |||
gt_shape = P.Shape()(gt_box) | |||
gt_box = P.Reshape()(gt_box, (gt_shape[0], 1, 1, 1, gt_shape[1], gt_shape[2])) | |||
# add one more dimension for broadcast | |||
iou = self.iou(P.ExpandDims()(pred_boxes, -2), gt_box) | |||
# gt_box is x,y,h,w after normalize | |||
# [batch, grid[0], grid[1], num_anchor, num_gt] | |||
best_iou = self.reduce_max(iou, -1) | |||
# [batch, grid[0], grid[1], num_anchor] | |||
# ignore_mask IOU too small | |||
ignore_mask = best_iou < self.ignore_threshold | |||
ignore_mask = P.Cast()(ignore_mask, ms.float32) | |||
ignore_mask = P.ExpandDims()(ignore_mask, -1) | |||
# ignore_mask backpro will cause a lot maximunGrad and minimumGrad time consume. | |||
# so we turn off its gradient | |||
ignore_mask = F.stop_gradient(ignore_mask) | |||
xy_loss = self.xy_loss(object_mask, box_loss_scale, prediction[:, :, :, :, :2], true_xy) | |||
wh_loss = self.wh_loss(object_mask, box_loss_scale, prediction[:, :, :, :, 2:4], true_wh) | |||
confidence_loss = self.confidenceLoss(object_mask, prediction[:, :, :, :, 4:5], ignore_mask) | |||
class_loss = self.classLoss(object_mask, prediction[:, :, :, :, 5:], class_probs) | |||
loss = xy_loss + wh_loss + confidence_loss + class_loss | |||
batch_size = P.Shape()(prediction)[0] | |||
return loss / batch_size | |||
class YOLOV3DarkNet53(nn.Cell): | |||
""" | |||
Darknet based YOLOV3 network. | |||
Args: | |||
is_training: Bool. Whether train or not. | |||
Returns: | |||
Cell, cell instance of Darknet based YOLOV3 neural network. | |||
Examples: | |||
YOLOV3DarkNet53(True) | |||
""" | |||
def __init__(self, is_training): | |||
super(YOLOV3DarkNet53, self).__init__() | |||
self.config = ConfigYOLOV3DarkNet53() | |||
# YOLOv3 network | |||
self.feature_map = YOLOv3(backbone=DarkNet(ResidualBlock, self.config.backbone_layers, | |||
self.config.backbone_input_shape, | |||
self.config.backbone_shape, | |||
detect=True), | |||
backbone_shape=self.config.backbone_shape, | |||
out_channel=self.config.out_channel) | |||
# prediction on the default anchor boxes | |||
self.detect_1 = DetectionBlock('l', is_training=is_training) | |||
self.detect_2 = DetectionBlock('m', is_training=is_training) | |||
self.detect_3 = DetectionBlock('s', is_training=is_training) | |||
def construct(self, x, input_shape): | |||
big_object_output, medium_object_output, small_object_output = self.feature_map(x) | |||
output_big = self.detect_1(big_object_output, input_shape) | |||
output_me = self.detect_2(medium_object_output, input_shape) | |||
output_small = self.detect_3(small_object_output, input_shape) | |||
# big is the final output which has smallest feature map | |||
return output_big, output_me, output_small | |||
class YoloWithLossCell(nn.Cell): | |||
"""YOLOV3 loss.""" | |||
def __init__(self, network): | |||
super(YoloWithLossCell, self).__init__() | |||
self.yolo_network = network | |||
self.config = ConfigYOLOV3DarkNet53() | |||
self.loss_big = YoloLossBlock('l', self.config) | |||
self.loss_me = YoloLossBlock('m', self.config) | |||
self.loss_small = YoloLossBlock('s', self.config) | |||
def construct(self, x, y_true_0, y_true_1, y_true_2, gt_0, gt_1, gt_2, input_shape): | |||
yolo_out = self.yolo_network(x, input_shape) | |||
loss_l = self.loss_big(*yolo_out[0], y_true_0, gt_0, input_shape) | |||
loss_m = self.loss_me(*yolo_out[1], y_true_1, gt_1, input_shape) | |||
loss_s = self.loss_small(*yolo_out[2], y_true_2, gt_2, input_shape) | |||
return loss_l + loss_m + loss_s | |||
class TrainingWrapper(nn.Cell): | |||
"""Training wrapper.""" | |||
def __init__(self, network, optimizer, sens=1.0): | |||
super(TrainingWrapper, self).__init__(auto_prefix=False) | |||
self.network = network | |||
self.network.set_grad() | |||
self.weights = optimizer.parameters | |||
self.optimizer = optimizer | |||
self.grad = C.GradOperation(get_by_list=True, sens_param=True) | |||
self.sens = sens | |||
self.reducer_flag = False | |||
self.grad_reducer = None | |||
self.parallel_mode = context.get_auto_parallel_context("parallel_mode") | |||
if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]: | |||
self.reducer_flag = True | |||
if self.reducer_flag: | |||
mean = context.get_auto_parallel_context("gradients_mean") | |||
if auto_parallel_context().get_device_num_is_set(): | |||
degree = context.get_auto_parallel_context("device_num") | |||
else: | |||
degree = get_group_size() | |||
self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree) | |||
def construct(self, *args): | |||
weights = self.weights | |||
loss = self.network(*args) | |||
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) | |||
grads = self.grad(self.network, weights)(*args, sens) | |||
if self.reducer_flag: | |||
grads = self.grad_reducer(grads) | |||
return F.depend(loss, self.optimizer(grads)) |
@@ -0,0 +1,192 @@ | |||
# Copyright 2020 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""YOLOV3 dataset.""" | |||
import os | |||
import multiprocessing | |||
import cv2 | |||
from PIL import Image | |||
from pycocotools.coco import COCO | |||
import mindspore.dataset as de | |||
import mindspore.dataset.vision.c_transforms as CV | |||
from src.distributed_sampler import DistributedSampler | |||
from src.transforms import reshape_fn, MultiScaleTrans | |||
# pylint: disable=locally-disables, invalid-name | |||
min_keypoints_per_image = 10 | |||
def _has_only_empty_bbox(anno): | |||
return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno) | |||
def _count_visible_keypoints(anno): | |||
return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno) | |||
def has_valid_annotation(anno): | |||
"""Check annotation file.""" | |||
# if it's empty, there is no annotation | |||
if not anno: | |||
return False | |||
# if all boxes have close to zero area, there is no annotation | |||
if _has_only_empty_bbox(anno): | |||
return False | |||
# keypoints task have a slight different critera for considering | |||
# if an annotation is valid | |||
if "keypoints" not in anno[0]: | |||
return True | |||
# for keypoint detection tasks, only consider valid images those | |||
# containing at least min_keypoints_per_image | |||
if _count_visible_keypoints(anno) >= min_keypoints_per_image: | |||
return True | |||
return False | |||
class COCOYoloDataset: | |||
"""YOLOV3 Dataset for COCO.""" | |||
def __init__(self, root, ann_file, remove_images_without_annotations=True, | |||
filter_crowd_anno=True, is_training=True): | |||
self.coco = COCO(ann_file) | |||
self.root = root | |||
self.img_ids = list(sorted(self.coco.imgs.keys())) | |||
self.filter_crowd_anno = filter_crowd_anno | |||
self.is_training = is_training | |||
# filter images without any annotations | |||
if remove_images_without_annotations: | |||
img_ids = [] | |||
for img_id in self.img_ids: | |||
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None) | |||
anno = self.coco.loadAnns(ann_ids) | |||
if has_valid_annotation(anno): | |||
img_ids.append(img_id) | |||
self.img_ids = img_ids | |||
self.categories = {cat["id"]: cat["name"] for cat in self.coco.cats.values()} | |||
self.cat_ids_to_continuous_ids = { | |||
v: i for i, v in enumerate(self.coco.getCatIds()) | |||
} | |||
self.continuous_ids_cat_ids = { | |||
v: k for k, v in self.cat_ids_to_continuous_ids.items() | |||
} | |||
def __getitem__(self, index): | |||
""" | |||
Args: | |||
index (int): Index | |||
Returns: | |||
(img, target) (tuple): target is a dictionary contains "bbox", "segmentation" or "keypoints", | |||
generated by the image's annotation. img is a PIL image. | |||
""" | |||
coco = self.coco | |||
img_id = self.img_ids[index] | |||
img_path = coco.loadImgs(img_id)[0]["file_name"] | |||
img = Image.open(os.path.join(self.root, img_path)).convert("RGB") | |||
if not self.is_training: | |||
return img, img_id | |||
ann_ids = coco.getAnnIds(imgIds=img_id) | |||
target = coco.loadAnns(ann_ids) | |||
# filter crowd annotations | |||
if self.filter_crowd_anno: | |||
annos = [anno for anno in target if anno["iscrowd"] == 0] | |||
else: | |||
annos = [anno for anno in target] | |||
target = {} | |||
boxes = [anno["bbox"] for anno in annos] | |||
target["bboxes"] = boxes | |||
classes = [anno["category_id"] for anno in annos] | |||
classes = [self.cat_ids_to_continuous_ids[cl] for cl in classes] | |||
target["labels"] = classes | |||
bboxes = target['bboxes'] | |||
labels = target['labels'] | |||
out_target = [] | |||
for bbox, label in zip(bboxes, labels): | |||
tmp = [] | |||
# convert to [x_min y_min x_max y_max] | |||
bbox = self._convetTopDown(bbox) | |||
tmp.extend(bbox) | |||
tmp.append(int(label)) | |||
# tmp [x_min y_min x_max y_max, label] | |||
out_target.append(tmp) | |||
return img, out_target, [], [], [], [], [], [] | |||
def __len__(self): | |||
return len(self.img_ids) | |||
def _convetTopDown(self, bbox): | |||
x_min = bbox[0] | |||
y_min = bbox[1] | |||
w = bbox[2] | |||
h = bbox[3] | |||
return [x_min, y_min, x_min+w, y_min+h] | |||
def create_yolo_dataset(image_dir, anno_path, batch_size, max_epoch, device_num, rank, | |||
config=None, is_training=True, shuffle=True): | |||
"""Create dataset for YOLOV3.""" | |||
cv2.setNumThreads(0) | |||
if is_training: | |||
filter_crowd = True | |||
remove_empty_anno = True | |||
else: | |||
filter_crowd = False | |||
remove_empty_anno = False | |||
yolo_dataset = COCOYoloDataset(root=image_dir, ann_file=anno_path, filter_crowd_anno=filter_crowd, | |||
remove_images_without_annotations=remove_empty_anno, is_training=is_training) | |||
distributed_sampler = DistributedSampler(len(yolo_dataset), device_num, rank, shuffle=shuffle) | |||
hwc_to_chw = CV.HWC2CHW() | |||
config.dataset_size = len(yolo_dataset) | |||
cores = multiprocessing.cpu_count() | |||
num_parallel_workers = int(cores / device_num) | |||
if is_training: | |||
multi_scale_trans = MultiScaleTrans(config, device_num) | |||
dataset_column_names = ["image", "annotation", "bbox1", "bbox2", "bbox3", | |||
"gt_box1", "gt_box2", "gt_box3"] | |||
if device_num != 8: | |||
ds = de.GeneratorDataset(yolo_dataset, column_names=dataset_column_names, | |||
num_parallel_workers=min(32, num_parallel_workers), | |||
sampler=distributed_sampler) | |||
ds = ds.batch(batch_size, per_batch_map=multi_scale_trans, input_columns=dataset_column_names, | |||
num_parallel_workers=min(32, num_parallel_workers), drop_remainder=True) | |||
else: | |||
ds = de.GeneratorDataset(yolo_dataset, column_names=dataset_column_names, sampler=distributed_sampler) | |||
ds = ds.batch(batch_size, per_batch_map=multi_scale_trans, input_columns=dataset_column_names, | |||
num_parallel_workers=min(8, num_parallel_workers), drop_remainder=True) | |||
else: | |||
ds = de.GeneratorDataset(yolo_dataset, column_names=["image", "img_id"], | |||
sampler=distributed_sampler) | |||
compose_map_func = (lambda image, img_id: reshape_fn(image, img_id, config)) | |||
ds = ds.map(operations=compose_map_func, input_columns=["image", "img_id"], | |||
output_columns=["image", "image_shape", "img_id"], | |||
column_order=["image", "image_shape", "img_id"], | |||
num_parallel_workers=8) | |||
ds = ds.map(operations=hwc_to_chw, input_columns=["image"], num_parallel_workers=8) | |||
ds = ds.batch(batch_size, drop_remainder=True) | |||
ds = ds.repeat(max_epoch) | |||
return ds, len(yolo_dataset) |