@@ -19,7 +19,6 @@ example/mnist_demo/model/ | |||
example/cifar_demo/model/ | |||
example/dog_cat_demo/model/ | |||
mindarmour.egg-info/ | |||
*model/ | |||
*MNIST/ | |||
*out.data/ | |||
*defensed_model/ | |||
@@ -27,7 +27,7 @@ from mindspore.nn.optim.momentum import Momentum | |||
from mindarmour.adv_robustness.defenses import AdversarialDefense | |||
from mindarmour.fuzz_testing import Fuzzer | |||
from mindarmour.fuzz_testing import ModelCoverageMetrics | |||
from mindarmour.fuzz_testing import KMultisectionNeuronCoverage | |||
from mindarmour.utils.logger import LogUtil | |||
from examples.common.dataset.data_processing import generate_mnist_dataset | |||
@@ -38,33 +38,66 @@ TAG = 'Fuzz_testing and enhance model' | |||
LOGGER.set_level('INFO') | |||
def split_dataset(image, label, proportion): | |||
""" | |||
Split the generated fuzz data into train and test set. | |||
""" | |||
indices = np.arange(len(image)) | |||
random.shuffle(indices) | |||
train_length = int(len(image) * proportion) | |||
train_image = [image[i] for i in indices[:train_length]] | |||
train_label = [label[i] for i in indices[:train_length]] | |||
test_image = [image[i] for i in indices[:train_length]] | |||
test_label = [label[i] for i in indices[:train_length]] | |||
return train_image, train_label, test_image, test_label | |||
def example_lenet_mnist_fuzzing(): | |||
""" | |||
An example of fuzz testing and then enhance the non-robustness model. | |||
""" | |||
# upload trained network | |||
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/lenet_m1-10_1250.ckpt' | |||
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||
net = LeNet5() | |||
load_dict = load_checkpoint(ckpt_path) | |||
load_param_into_net(net, load_dict) | |||
model = Model(net) | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Contrast', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Translate', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Brightness', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Noise', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Scale', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Shear', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1]}} | |||
] | |||
mutate_config = [ | |||
{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], 'auto_param': [True, False]}}, | |||
{'method': 'MotionBlur', | |||
'params': {'degree': [1, 2, 5], 'angle': [45, 10, 100, 140, 210, 270, 300], 'auto_param': [True]}}, | |||
{'method': 'GradientBlur', | |||
'params': {'point': [[10, 10]], 'auto_param': [True]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'GaussianNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'SaltAndPepperNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'NaturalNoise', | |||
'params': {'ratio': [0.1], 'k_x_range': [(1, 3), (1, 5)], 'k_y_range': [(1, 5)], 'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'GradientLuminance', | |||
'params': {'color_start': [(0, 0, 0)], 'color_end': [(255, 255, 255)], 'start_point': [(10, 10)], | |||
'scope': [0.5], 'pattern': ['light'], 'bright_rate': [0.3], 'mode': ['circle'], | |||
'auto_param': [False, True]}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': [0, 0.05, -0.05], 'y_bias': [0, -0.05, 0.05], 'auto_param': [False, True]}}, | |||
{'method': 'Scale', | |||
'params': {'factor_x': [1, 0.9], 'factor_y': [1, 0.9], 'auto_param': [False, True]}}, | |||
{'method': 'Shear', | |||
'params': {'factor': [0.2, 0.1], 'direction': ['horizontal', 'vertical'], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'Perspective', | |||
'params': {'ori_pos': [[[0, 0], [0, 800], [800, 0], [800, 800]]], | |||
'dst_pos': [[[50, 0], [0, 800], [780, 0], [800, 800]]], 'auto_param': [False, True]}}, | |||
{'method': 'Curve', | |||
'params': {'curves': [5], 'depth': [2], 'mode': ['vertical'], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
# get training data | |||
data_list = "../common/dataset/MNIST/train" | |||
@@ -75,49 +108,36 @@ def example_lenet_mnist_fuzzing(): | |||
images = data[0].astype(np.float32) | |||
train_images.append(images) | |||
train_images = np.concatenate(train_images, axis=0) | |||
neuron_num = 10 | |||
segmented_num = 1000 | |||
# initialize fuzz test with training dataset | |||
model_coverage_test = ModelCoverageMetrics(model, neuron_num, segmented_num, train_images) | |||
segmented_num = 100 | |||
# fuzz test with original test data | |||
# get test data | |||
data_list = "../common/dataset/MNIST/test" | |||
batch_size = 32 | |||
init_samples = 5000 | |||
max_iters = 50000 | |||
batch_size = batch_size | |||
init_samples = 50 | |||
max_iters = 500 | |||
mutate_num_per_seed = 10 | |||
ds = generate_mnist_dataset(data_list, batch_size, num_samples=init_samples, | |||
sparse=False) | |||
ds = generate_mnist_dataset(data_list, batch_size=batch_size, num_samples=init_samples, sparse=False) | |||
test_images = [] | |||
test_labels = [] | |||
for data in ds.create_tuple_iterator(output_numpy=True): | |||
images = data[0].astype(np.float32) | |||
labels = data[1] | |||
test_images.append(images) | |||
test_labels.append(labels) | |||
test_images.append(data[0].astype(np.float32)) | |||
test_labels.append(data[1]) | |||
test_images = np.concatenate(test_images, axis=0) | |||
test_labels = np.concatenate(test_labels, axis=0) | |||
initial_seeds = [] | |||
coverage = KMultisectionNeuronCoverage(model, train_images, segmented_num=segmented_num, incremental=True) | |||
kmnc = coverage.get_metrics(test_images[:100]) | |||
print('kmnc: ', kmnc) | |||
# make initial seeds | |||
initial_seeds = [] | |||
for img, label in zip(test_images, test_labels): | |||
initial_seeds.append([img, label]) | |||
model_coverage_test.calculate_coverage( | |||
np.array(test_images[:100]).astype(np.float32)) | |||
LOGGER.info(TAG, 'KMNC of test dataset before fuzzing is : %s', | |||
model_coverage_test.get_kmnc()) | |||
LOGGER.info(TAG, 'NBC of test dataset before fuzzing is : %s', | |||
model_coverage_test.get_nbc()) | |||
LOGGER.info(TAG, 'SNAC of test dataset before fuzzing is : %s', | |||
model_coverage_test.get_snac()) | |||
model_fuzz_test = Fuzzer(model, train_images, 10, 1000) | |||
model_fuzz_test = Fuzzer(model) | |||
gen_samples, gt, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, | |||
initial_seeds, | |||
eval_metrics='auto', | |||
initial_seeds, coverage, | |||
evaluate=True, | |||
max_iters=max_iters, | |||
mutate_num_per_seed=mutate_num_per_seed) | |||
@@ -125,24 +145,10 @@ def example_lenet_mnist_fuzzing(): | |||
for key in metrics: | |||
LOGGER.info(TAG, key + ': %s', metrics[key]) | |||
def split_dataset(image, label, proportion): | |||
""" | |||
Split the generated fuzz data into train and test set. | |||
""" | |||
indices = np.arange(len(image)) | |||
random.shuffle(indices) | |||
train_length = int(len(image) * proportion) | |||
train_image = [image[i] for i in indices[:train_length]] | |||
train_label = [label[i] for i in indices[:train_length]] | |||
test_image = [image[i] for i in indices[:train_length]] | |||
test_label = [label[i] for i in indices[:train_length]] | |||
return train_image, train_label, test_image, test_label | |||
train_image, train_label, test_image, test_label = split_dataset( | |||
gen_samples, gt, 0.7) | |||
train_image, train_label, test_image, test_label = split_dataset(gen_samples, gt, 0.7) | |||
# load model B and test it on the test set | |||
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/lenet_m2-10_1250.ckpt' | |||
ckpt_path = '../common/networks/lenet5/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||
net = LeNet5() | |||
load_dict = load_checkpoint(ckpt_path) | |||
load_param_into_net(net, load_dict) | |||
@@ -154,12 +160,11 @@ def example_lenet_mnist_fuzzing(): | |||
# enhense model robustness | |||
lr = 0.001 | |||
momentum = 0.9 | |||
loss_fn = SoftmaxCrossEntropyWithLogits(Sparse=True) | |||
loss_fn = SoftmaxCrossEntropyWithLogits(sparse=True) | |||
optimizer = Momentum(net.trainable_params(), lr, momentum) | |||
adv_defense = AdversarialDefense(net, loss_fn, optimizer) | |||
adv_defense.batch_defense(np.array(train_image).astype(np.float32), | |||
np.argmax(train_label, axis=1).astype(np.int32)) | |||
adv_defense.batch_defense(np.array(train_image).astype(np.float32), np.argmax(train_label, axis=1).astype(np.int32)) | |||
preds_en = net(Tensor(test_image, dtype=mindspore.float32)).asnumpy() | |||
acc_en = np.sum(np.argmax(preds_en, axis=1) == np.argmax(test_label, axis=1)) / len(test_label) | |||
print('Accuracy of enhensed model on test set is ', acc_en) | |||
@@ -167,5 +172,5 @@ def example_lenet_mnist_fuzzing(): | |||
if __name__ == '__main__': | |||
# device_target can be "CPU", "GPU" or "Ascend" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
example_lenet_mnist_fuzzing() |
@@ -35,24 +35,50 @@ def test_lenet_mnist_fuzzing(): | |||
load_dict = load_checkpoint(ckpt_path) | |||
load_param_into_net(net, load_dict) | |||
model = Model(net) | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'radius': [0.1, 0.2, 0.3], | |||
'auto_param': [True, False]}}, | |||
{'method': 'Contrast', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Translate', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Brightness', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Noise', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Scale', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'Shear', | |||
'params': {'auto_param': [True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}} | |||
] | |||
mutate_config = [ | |||
{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], | |||
'auto_param': [True, False]}}, | |||
{'method': 'MotionBlur', | |||
'params': {'degree': [1, 2, 5], 'angle': [45, 10, 100, 140, 210, 270, 300], 'auto_param': [True]}}, | |||
{'method': 'GradientBlur', | |||
'params': {'point': [[10, 10]], 'auto_param': [True]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'GaussianNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'SaltAndPepperNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'NaturalNoise', | |||
'params': {'ratio': [0.1, 0.2, 0.3], 'k_x_range': [(1, 3), (1, 5)], 'k_y_range': [(1, 5)], | |||
'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'GradientLuminance', | |||
'params': {'color_start': [(0, 0, 0)], 'color_end': [(255, 255, 255)], 'start_point': [(10, 10)], | |||
'scope': [0.5], 'pattern': ['light'], 'bright_rate': [0.3], 'mode': ['circle'], | |||
'auto_param': [False, True]}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': [0, 0.05, -0.05], 'y_bias': [0, -0.05, 0.05], 'auto_param': [False, True]}}, | |||
{'method': 'Scale', | |||
'params': {'factor_x': [1, 0.9], 'factor_y': [1, 0.9], 'auto_param': [False, True]}}, | |||
{'method': 'Shear', | |||
'params': {'factor': [0.2, 0.1], 'direction': ['horizontal', 'vertical'], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'Perspective', | |||
'params': {'ori_pos': [[[0, 0], [0, 800], [800, 0], [800, 800]]], | |||
'dst_pos': [[[50, 0], [0, 800], [780, 0], [800, 800]]], 'auto_param': [False, True]}}, | |||
{'method': 'Curve', | |||
'params': {'curves': [5], 'depth': [2], 'mode': ['vertical'], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}, | |||
{'method': 'PGD', | |||
'params': {'eps': [0.1, 0.2, 0.4], 'eps_iter': [0.05, 0.1], 'nb_iter': [1, 3]}}, | |||
{'method': 'MDIIM', | |||
'params': {'eps': [0.1, 0.2, 0.4], 'prob': [0.5, 0.1], | |||
'norm_level': [1, 2, '1', '2', 'l1', 'l2', 'inf', 'np.inf', 'linf']}} | |||
] | |||
# get training data | |||
data_list = "../common/dataset/MNIST/train" | |||
@@ -88,7 +114,10 @@ def test_lenet_mnist_fuzzing(): | |||
print('KMNC of initial seeds is: ', kmnc) | |||
initial_seeds = initial_seeds[:100] | |||
model_fuzz_test = Fuzzer(model) | |||
_, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, coverage, evaluate=True, max_iters=10, | |||
_, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, | |||
initial_seeds, coverage, | |||
evaluate=True, | |||
max_iters=10, | |||
mutate_num_per_seed=20) | |||
if metrics: | |||
@@ -0,0 +1,176 @@ | |||
# Copyright 2021 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
"""Example for natural robustness methods.""" | |||
import numpy as np | |||
import cv2 | |||
from mindarmour.natural_robustness import Translate, Curve, Perspective, Scale, Shear, Rotate, SaltAndPepperNoise, \ | |||
NaturalNoise, GaussianNoise, UniformNoise, MotionBlur, GaussianBlur, GradientBlur, Contrast, GradientLuminance | |||
def test_perspective(image): | |||
"""Test perspective.""" | |||
ori_pos = [[0, 0], [0, 800], [800, 0], [800, 800]] | |||
dst_pos = [[50, 0], [0, 800], [780, 0], [800, 800]] | |||
trans = Perspective(ori_pos, dst_pos) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_uniform_noise(image): | |||
"""Test uniform noise.""" | |||
trans = UniformNoise(factor=0.1) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_gaussian_noise(image): | |||
"""Test gaussian noise.""" | |||
trans = GaussianNoise(factor=0.1) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_contrast(image): | |||
"""Test contrast.""" | |||
trans = Contrast(alpha=0.3, beta=0) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_gaussian_blur(image): | |||
"""Test gaussian blur.""" | |||
trans = GaussianBlur(ksize=5) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_salt_and_pepper_noise(image): | |||
"""Test salt and pepper noise.""" | |||
trans = SaltAndPepperNoise(factor=0.01) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_translate(image): | |||
"""Test translate.""" | |||
trans = Translate(x_bias=0.1, y_bias=0.1) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_scale(image): | |||
"""Test scale.""" | |||
trans = Scale(factor_x=0.7, factor_y=0.7) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_shear(image): | |||
"""Test shear.""" | |||
trans = Shear(factor=0.2) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_rotate(image): | |||
"""Test rotate.""" | |||
trans = Rotate(angle=20) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_curve(image): | |||
"""Test curve.""" | |||
trans = Curve(curves=1.5, depth=1.5, mode='horizontal') | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_natural_noise(image): | |||
"""Test natural noise.""" | |||
trans = NaturalNoise(ratio=0.0001, k_x_range=(1, 30), k_y_range=(1, 10), auto_param=True) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_gradient_luminance(image): | |||
"""Test gradient luminance.""" | |||
height, width = image.shape[:2] | |||
point = (height // 4, width // 2) | |||
start = (255, 255, 255) | |||
end = (0, 0, 0) | |||
scope = 0.3 | |||
bright_rate = 0.4 | |||
trans = GradientLuminance(start, end, start_point=point, scope=scope, pattern='dark', bright_rate=bright_rate, | |||
mode='horizontal') | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_motion_blur(image): | |||
"""Test motion blur.""" | |||
angle = -10.5 | |||
i = 3 | |||
trans = MotionBlur(degree=i, angle=angle) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
def test_gradient_blur(image): | |||
"""Test gradient blur.""" | |||
number = 10 | |||
h, w = image.shape[:2] | |||
point = (int(h / 5), int(w / 5)) | |||
center = False | |||
trans = GradientBlur(point, number, center) | |||
dst = trans(image) | |||
cv2.imshow('dst', dst) | |||
cv2.waitKey() | |||
if __name__ == '__main__': | |||
img = cv2.imread('1.jpeg') | |||
img = np.array(img) | |||
test_uniform_noise(img) | |||
test_gaussian_noise(img) | |||
test_motion_blur(img) | |||
test_gradient_blur(img) | |||
test_gradient_luminance(img) | |||
test_natural_noise(img) | |||
test_curve(img) | |||
test_rotate(img) | |||
test_shear(img) | |||
test_scale(img) | |||
test_translate(img) | |||
test_salt_and_pepper_noise(img) | |||
test_gaussian_blur(img) | |||
test_constract(img) | |||
test_perspective(img) |
@@ -0,0 +1,206 @@ | |||
# 自然扰动样本生成serving | |||
提供自然扰动样本生成在线服务。客户端传入图片和扰动参数,服务端返回扰动后的图片数据。 | |||
## 环境准备 | |||
硬件环境:Ascend 910,GPU | |||
操作系统:Linux-x86_64 | |||
软件环境: | |||
1. python 3.7.5或python 3.9.0 | |||
2. 安装MindSpore 1.5.0可以参考[MindSpore安装页面](https://www.mindspore.cn/install) | |||
3. 安装MindSpore Serving 1.5.0可以参考[MindSpore Serving 安装页面](https://www.mindspore.cn/serving/docs/zh-CN/r1.5/serving_install.html) | |||
4. 安装serving分支的MindArmour: | |||
- 从Gitee下载源码 | |||
`git clone https://gitee.com/mindspore/mindarmour.git` | |||
- 编译并安装MindArmour | |||
`python setup.py install` | |||
### 文件结构说明 | |||
```bash | |||
serving | |||
├── server | |||
│ ├── serving_server.py # 启动serving服务脚本 | |||
│ ├── export_model | |||
│ │ └── add_model.py # 生成模型文件脚本 | |||
│ └── perturbation | |||
│ └── serverable_config.py # 服务端接收客户端数据后的处理脚本 | |||
└── client | |||
├── serving_client.py # 启动客户端脚本 | |||
└── perturb_config.py # 扰动方法配置文件 | |||
``` | |||
## 脚本说明及使用 | |||
### 导出模型 | |||
在`server/export_model`目录下,使用[add_model.py](https://gitee.com/mindspore/serving/blob/r1.5/example/tensor_add/export_model/add_model.py),构造了一个只有Add算子的tensor加法网络。使用命令 | |||
```bash | |||
python add_model.py | |||
``` | |||
在`perturbation`模型文件夹下生成`tensor_add.mindir`模型文件。 | |||
该服务实际上并没有使用到模型,但目前版本的serving需要有一个模型,serving升级后这部分会删除。 | |||
### 部署Serving推理服务 | |||
1. #### `servable_config.py`说明。 | |||
```python | |||
··· | |||
# 客户端可以请求的方法,包含4个返回值:"results", "file_names", "file_length", "names_dict" | |||
@register.register_method(output_names=["results", "file_names", "file_length", "names_dict"]) | |||
def natural_perturbation(img, perturb_config, methods_number, outputs_number): | |||
"""method natural_perturbation data flow definition, only preprocessing and call model""" | |||
res = register.add_stage(perturb, img, perturb_config, methods_number, outputs_number, outputs_count=4) | |||
return res | |||
``` | |||
方法`natural_perturbation`为对外提供服务的接口。 | |||
**输入:** | |||
- img:输入为图片,格式为bytes。 | |||
- perturb_config:扰动配置项,具体配置参考`perturb_config.py`。 | |||
- methods_number:每次扰动随机从配置项中选择方法的个数。 | |||
- outputs_number:对于每张图片,生成的扰动图片数量。 | |||
**输出**res中包含4个参数: | |||
- results:拼接后的图像bytes; | |||
- file_names:图像名,格式为`xxx.png`,其中‘xxx’为A-Za-z中随机选择20个字符构成的字符串。 | |||
- file_length:每张图片的bytes长度。 | |||
- names_dict: 图片名和图片使用扰动方法构成的字典。格式为: | |||
```bash | |||
{ | |||
picture1.png: [[method1, parameters of method1], [method2, parameters of method2], ...]], | |||
picture2.png: [[method3, parameters of method3], [method4, parameters of method4], ...]], | |||
... | |||
} | |||
``` | |||
2. #### 启动server。 | |||
```python | |||
··· | |||
def start(): | |||
servable_dir = os.path.dirname(os.path.realpath(sys.argv[0])) | |||
# 服务配置 | |||
servable_config = server.ServableStartConfig(servable_directory=servable_dir, servable_name="perturbation", device_ids=(0, 1), num_parallel_workers=4) | |||
# 启动服务 | |||
server.start_servables(servable_configs=servable_config) | |||
# 启动启动gRPC服务,用于客户端和服务端之间通信 | |||
server.start_grpc_server(address="0.0.0.0:5500", max_msg_mb_size=200) # ip和最大的传输数据量,单位MB | |||
# 启动启动Restful服务,用于客户端和服务端之间通信 | |||
server.start_restful_server(address="0.0.0.0:5500") | |||
``` | |||
gRPC传输性能更好,Restful更适合用于web服务,根据需要选择。 | |||
执行命令`python serverong_server.py`启动服务。 | |||
当服务端打印日志`Serving RESTful server start success, listening on 0.0.0.0:5500`时,表示Serving RESTful服务启动成功,推理模型已成功加载。 | |||
### 客户端进行推理 | |||
1. 在`perturb_config.py`中设置扰动方法及参数。下面是个例子: | |||
```python | |||
PerturbConfig = [{"method": "Contrast", "params": {"alpha": 1.5, "beta": 0}}, | |||
{"method": "GaussianBlur", "params": {"ksize": 5}}, | |||
{"method": "SaltAndPepperNoise", "params": {"factor": 0.05}}, | |||
{"method": "Translate", "params": {"x_bias": 0.1, "y_bias": -0.2}}, | |||
{"method": "Scale", "params": {"factor_x": 0.7, "factor_y": 0.7}}, | |||
{"method": "Shear", "params": {"factor": 2, "director": "horizontal"}}, | |||
{"method": "Rotate", "params": {"angle": 40}}, | |||
{"method": "MotionBlur", "params": {"degree": 5, "angle": 45}}, | |||
{"method": "GradientBlur", "params": {"point": [50, 100], "kernel_num": 3, "center": True}}, | |||
{"method": "GradientLuminance", | |||
"params": {"color_start": [255, 255, 255], | |||
"color_end": [0, 0, 0], | |||
"start_point": [100, 150], "scope": 0.3, | |||
"bright_rate": 0.3, "pattern": "light", | |||
"mode": "circle"}}, | |||
{"method": "Curve", "params": {"curves": 5, "depth": 10, | |||
"mode": "vertical"}}, | |||
{"method": "Perspective", | |||
"params": {"ori_pos": [[0, 0], [0, 800], [800, 0], [800, 800]], | |||
"dst_pos": [[50, 0], [0, 800], [780, 0], [800, 800]]}}, | |||
] | |||
``` | |||
其中`method`为扰动方法名,`params`为对应方法的参数。可用的扰动方法及对应参数可在`mindarmour/natural_robustness/natural_noise.py`中查询。 | |||
2. 在`serving_client.py`中写客户端的处理脚本,包含输入输出的处理、服务端的调用,可以参考下面的例子。 | |||
```python | |||
··· | |||
def perturb(perturb_config): | |||
"""invoke servable perturbation method natural_perturbation""" | |||
# 请求的服务端ip及端口、请求的服务名、请求的方法名 | |||
client = Client("10.175.122.87:5500", "perturbation", "natural_perturbation") | |||
# 输入数据 | |||
instances = [] | |||
img_path = '/root/mindarmour/example/adversarial/test_data/1.png' | |||
result_path = '/root/mindarmour/example/adv/result/' | |||
methods_number = 2 | |||
outputs_number = 3 | |||
img = cv2.imread(img_path) | |||
img = cv2.imencode('.png', img)[1].tobytes() # 图片传输用bytes格式,不支持numpy.ndarray格式 | |||
perturb_config = json.dumps(perturb_config) # 配置方法转成json格式 | |||
instances.append({"img": img, 'perturb_config': perturb_config, "methods_number": methods_number, | |||
"outputs_number": outputs_number}) # instances中可添加多个输入 | |||
# 请求服务,返回结果 | |||
result = client.infer(instances) | |||
# 对服务请求得到的结果进行处理,将返回的图片字节流存成图片 | |||
file_names = result[0]['file_names'].split(';') | |||
length = result[0]['file_length'].tolist() | |||
before = 0 | |||
for name, leng in zip(file_names, length): | |||
res_img = result[0]['results'] | |||
res_img = res_img[before:before + leng] | |||
before = before + leng | |||
print('name: ', name) | |||
image = Image.open(BytesIO(res_img)) | |||
image.save(os.path.join(result_path, name)) | |||
names_dict = result[0]['names_dict'] | |||
with open('names_dict.json', 'w') as file: | |||
file.write(names_dict) | |||
``` | |||
启动client前,需将服务端的IP地址改成部署server的IP地址,图片路径、结果存储路基替换成用户数据路径。 | |||
目前serving数据传输支持的数据类型包括:python的int、float、bool、str、bytes,numpy number, numpy array object。 | |||
输入命令`python serving_client.py`开启客户端,如果对应目录下生成扰动样本图片则说明serving服务正确执行。 | |||
### 其他 | |||
在`serving_logs`目录下可以查看运行日志,辅助debug。 |
@@ -0,0 +1,41 @@ | |||
# Copyright 2021 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Configuration of natural robustness methods for server. | |||
""" | |||
perturb_configs = [{"method": "Contrast", "params": {"alpha": 1.5, "beta": 0}}, | |||
{"method": "GaussianBlur", "params": {"ksize": 5}}, | |||
{"method": "SaltAndPepperNoise", "params": {"factor": 0.05}}, | |||
{"method": "Translate", "params": {"x_bias": 0.1, "y_bias": -0.2}}, | |||
{"method": "Scale", "params": {"factor_x": 0.7, "factor_y": 0.7}}, | |||
{"method": "Shear", "params": {"factor": 2, "direction": "horizontal"}}, | |||
{"method": "Rotate", "params": {"angle": 40}}, | |||
{"method": "MotionBlur", "params": {"degree": 5, "angle": 45}}, | |||
{"method": "GradientBlur", "params": {"point": [50, 100], "kernel_num": 3, "center": True}}, | |||
{"method": "GradientLuminance", "params": {"color_start": [255, 255, 255], "color_end": [0, 0, 0], | |||
"start_point": [100, 150], "scope": 0.3, | |||
"bright_rate": 0.3, "pattern": "light", | |||
"mode": "circle"}}, | |||
{"method": "GradientLuminance", "params": {"color_start": [255, 255, 255], | |||
"color_end": [0, 0, 0], "start_point": [150, 200], | |||
"scope": 0.3, "pattern": "light", "mode": "horizontal"}}, | |||
{"method": "GradientLuminance", "params": {"color_start": [255, 255, 255], "color_end": [0, 0, 0], | |||
"start_point": [150, 200], "scope": 0.3, | |||
"pattern": "light", "mode": "vertical"}}, | |||
{"method": "Curve", "params": {"curves": 10, "depth": 10, "mode": "vertical"}}, | |||
{"method": "Perspective", "params": {"ori_pos": [[0, 0], [0, 800], [800, 0], [800, 800]], | |||
"dst_pos": [[50, 0], [0, 800], [780, 0], [800, 800]]}}, | |||
] |
@@ -0,0 +1,61 @@ | |||
# Copyright 2021 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""The client of example add.""" | |||
import os | |||
import json | |||
from io import BytesIO | |||
import cv2 | |||
from PIL import Image | |||
from mindspore_serving.client import Client | |||
from perturb_config import perturb_configs | |||
def perturb(perturb_config): | |||
"""Invoke servable perturbation method natural_perturbation""" | |||
client = Client("0.0.0.0:5500", "perturbation", "natural_perturbation") | |||
instances = [] | |||
img_path = 'test_data/1.png' | |||
result_path = 'result/' | |||
if not os.path.exists(result_path): | |||
os.mkdir(result_path) | |||
methods_number = 2 | |||
outputs_number = 10 | |||
img = cv2.imread(img_path) | |||
img = cv2.imencode('.png', img)[1].tobytes() | |||
perturb_config = json.dumps(perturb_config) | |||
instances.append({"img": img, 'perturb_config': perturb_config, "methods_number": methods_number, | |||
"outputs_number": outputs_number}) | |||
result = client.infer(instances) | |||
file_names = result[0]['file_names'].split(';') | |||
length = result[0]['file_length'].tolist() | |||
before = 0 | |||
for name, leng in zip(file_names, length): | |||
res_img = result[0]['results'] | |||
res_img = res_img[before:before + leng] | |||
before = before + leng | |||
print('name: ', name) | |||
image = Image.open(BytesIO(res_img)) | |||
image.save(os.path.join(result_path, name)) | |||
names_dict = result[0]['names_dict'] | |||
with open('names_dict.json', 'w') as file: | |||
file.write(names_dict) | |||
if __name__ == '__main__': | |||
perturb(perturb_configs) |
@@ -0,0 +1,58 @@ | |||
# Copyright 2021 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""add model generator""" | |||
import os | |||
from shutil import copyfile | |||
import numpy as np | |||
import mindspore.context as context | |||
import mindspore.nn as nn | |||
import mindspore.ops as ops | |||
import mindspore as ms | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
class Net(nn.Cell): | |||
"""Define Net of add""" | |||
def __init__(self): | |||
super(Net, self).__init__() | |||
self.add = ops.Add() | |||
def construct(self, x_, y_): | |||
"""construct add net""" | |||
return self.add(x_, y_) | |||
def export_net(): | |||
"""Export add net of 2x2 + 2x2, and copy output model `tensor_add.mindir` to directory ../add/1""" | |||
x = np.ones([2, 2]).astype(np.float32) | |||
y = np.ones([2, 2]).astype(np.float32) | |||
add = Net() | |||
ms.export(add, ms.Tensor(x), ms.Tensor(y), file_name='tensor_add', file_format='MINDIR') | |||
dst_dir = '../perturbation/1' | |||
try: | |||
os.mkdir(dst_dir) | |||
except OSError: | |||
pass | |||
dst_file = os.path.join(dst_dir, 'tensor_add.mindir') | |||
copyfile('tensor_add.mindir', dst_file) | |||
print("copy tensor_add.mindir to " + dst_dir + " success") | |||
if __name__ == "__main__": | |||
export_net() |
@@ -0,0 +1,109 @@ | |||
# Copyright 2021 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""perturbation servable config""" | |||
import json | |||
import copy | |||
import random | |||
from io import BytesIO | |||
import cv2 | |||
import numpy as np | |||
from PIL import Image | |||
from mindspore_serving.server import register | |||
from mindarmour.natural_robustness import Contrast, GaussianBlur, SaltAndPepperNoise, Scale, Shear, \ | |||
Translate, Rotate, MotionBlur, GradientBlur, GradientLuminance, NaturalNoise, Curve, Perspective | |||
CHARACTERS = [chr(i) for i in range(65, 91)]+[chr(j) for j in range(97, 123)] | |||
methods_dict = {'Contrast': Contrast, | |||
'GaussianBlur': GaussianBlur, | |||
'SaltAndPepperNoise': SaltAndPepperNoise, | |||
'Translate': Translate, | |||
'Scale': Scale, | |||
'Shear': Shear, | |||
'Rotate': Rotate, | |||
'MotionBlur': MotionBlur, | |||
'GradientBlur': GradientBlur, | |||
'GradientLuminance': GradientLuminance, | |||
'NaturalNoise': NaturalNoise, | |||
'Curve': Curve, | |||
'Perspective': Perspective} | |||
def check_inputs(img, perturb_config, methods_number, outputs_number): | |||
"""Check inputs.""" | |||
if not np.any(img): | |||
raise ValueError("img cannot be empty.") | |||
img = Image.open(BytesIO(img)) | |||
img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) | |||
config = json.loads(perturb_config) | |||
if not config: | |||
raise ValueError("perturb_config cannot be empty.") | |||
for item in config: | |||
if item['method'] not in methods_dict.keys(): | |||
raise ValueError("{} is not a valid method.".format(item['method'])) | |||
methods_number = int(methods_number) | |||
if methods_number < 1: | |||
raise ValueError("methods_number must more than 0.") | |||
outputs_number = int(outputs_number) | |||
if outputs_number < 1: | |||
raise ValueError("outputs_number must more than 0.") | |||
return img, config, methods_number, outputs_number | |||
def perturb(img, perturb_config, methods_number, outputs_number): | |||
"""Perturb given image.""" | |||
img, config, methods_number, outputs_number = check_inputs(img, perturb_config, methods_number, outputs_number) | |||
res_img_bytes = b'' | |||
file_names = [] | |||
file_length = [] | |||
names_dict = {} | |||
for _ in range(outputs_number): | |||
dst = copy.deepcopy(img) | |||
used_methods = [] | |||
for _ in range(methods_number): | |||
item = np.random.choice(config) | |||
method_name = item['method'] | |||
method = methods_dict[method_name] | |||
params = item['params'] | |||
dst = method(**params)(img) | |||
method_params = params | |||
used_methods.append([method_name, method_params]) | |||
name = ''.join(random.sample(CHARACTERS, 20)) | |||
name += '.png' | |||
file_names.append(name) | |||
names_dict[name] = used_methods | |||
res_img = cv2.imencode('.png', dst)[1].tobytes() | |||
res_img_bytes += res_img | |||
file_length.append(len(res_img)) | |||
names_dict = json.dumps(names_dict) | |||
return res_img_bytes, ';'.join(file_names), file_length, names_dict | |||
model = register.declare_model(model_file="tensor_add.mindir", model_format="MindIR", with_batch_dim=False) | |||
@register.register_method(output_names=["results", "file_names", "file_length", "names_dict"]) | |||
def natural_perturbation(img, perturb_config, methods_number, outputs_number): | |||
"""method natural_perturbation data flow definition, only preprocessing and call model""" | |||
res = register.add_stage(perturb, img, perturb_config, methods_number, outputs_number, outputs_count=4) | |||
return res |
@@ -0,0 +1,35 @@ | |||
# Copyright 2021 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
# ============================================================================ | |||
"""The server of example perturbation""" | |||
import os | |||
import sys | |||
from mindspore_serving import server | |||
def start(): | |||
"""Start server.""" | |||
servable_dir = os.path.dirname(os.path.realpath(sys.argv[0])) | |||
servable_config = server.ServableStartConfig(servable_directory=servable_dir, servable_name="perturbation", | |||
device_ids=(0, 1), num_parallel_workers=4) | |||
server.start_servables(servable_configs=servable_config) | |||
server.start_grpc_server(address="0.0.0.0:5500", max_msg_mb_size=200) | |||
# server.start_restful_server(address="0.0.0.0:5500") | |||
if __name__ == "__main__": | |||
start() |
@@ -92,7 +92,7 @@ def _projection(values, eps, norm_level): | |||
return proj_flat.reshape(values.shape) | |||
if norm_level in (2, '2'): | |||
return eps*normalize_value(values, norm_level) | |||
if norm_level in (np.inf, 'inf'): | |||
if norm_level in (np.inf, 'inf', 'linf', 'np.inf'): | |||
return eps*np.sign(values) | |||
msg = 'Values of `norm_level` different from 1, 2 and `np.inf` are ' \ | |||
'currently not supported.' | |||
@@ -275,7 +275,7 @@ class MomentumIterativeMethod(IterativeGradientMethod): | |||
nb_iter (int): Number of iteration. Default: 5. | |||
decay_factor (float): Decay factor in iterations. Default: 1.0. | |||
norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: | |||
np.inf, 1 or 2. Default: 'inf'. | |||
1, 2, '1', '2', 'l1', 'l2', 'inf', 'np.inf', np.inf and 'linf'. Default: 'inf'. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
@@ -419,7 +419,7 @@ class ProjectedGradientDescent(BasicIterativeMethod): | |||
attack. Default: False. | |||
nb_iter (int): Number of iteration. Default: 5. | |||
norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: | |||
np.inf, 1 or 2. Default: 'inf'. | |||
1, 2, '1', '2', 'l1', 'l2', 'inf', 'np.inf', np.inf and 'linf'. Default: 'inf'. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
@@ -569,7 +569,7 @@ class MomentumDiverseInputIterativeMethod(MomentumIterativeMethod): | |||
is_targeted (bool): If True, targeted attack. If False, untargeted | |||
attack. Default: False. | |||
norm_level (Union[int, numpy.inf]): Order of the norm. Possible values: | |||
np.inf, 1 or 2. Default: 'l1'. | |||
1, 2, '1', '2', 'l1', 'l2', 'inf', 'np.inf', np.inf and 'linf'. Default: 'l1'. | |||
prob (float): Transformation probability. Default: 0.5. | |||
loss_fn (Loss): Loss function for optimization. If None, the input network \ | |||
is already equipped with loss function. Default: None. | |||
@@ -24,10 +24,10 @@ from mindspore import nn | |||
from mindarmour.utils._check_param import check_model, check_numpy_param, check_param_multi_types, check_norm_level, \ | |||
check_param_in_range, check_param_type, check_int_positive, check_param_bounds | |||
from mindarmour.utils.logger import LogUtil | |||
from ..adv_robustness.attacks import FastGradientSignMethod, \ | |||
from mindarmour.adv_robustness.attacks import FastGradientSignMethod, \ | |||
MomentumDiverseInputIterativeMethod, ProjectedGradientDescent | |||
from .image_transform import Contrast, Brightness, Blur, \ | |||
Noise, Translate, Scale, Shear, Rotate | |||
from mindarmour.natural_robustness import GaussianBlur, MotionBlur, GradientBlur, UniformNoise, GaussianNoise, \ | |||
SaltAndPepperNoise, NaturalNoise, Contrast, GradientLuminance, Translate, Scale, Shear, Rotate, Perspective, Curve | |||
from .model_coverage_metrics import CoverageMetrics, KMultisectionNeuronCoverage | |||
LOGGER = LogUtil.get_instance() | |||
@@ -104,17 +104,79 @@ class Fuzzer: | |||
target_model (Model): Target fuzz model. | |||
Examples: | |||
>>> import numpy as np | |||
>>> from mindspore import context | |||
>>> from mindspore import nn | |||
>>> from mindspore.common.initializer import TruncatedNormal | |||
>>> from mindspore.ops import operations as P | |||
>>> from mindspore.train import Model | |||
>>> from mindspore.ops import TensorSummary | |||
>>> from mindarmour.fuzz_testing import Fuzzer | |||
>>> from mindarmour.fuzz_testing import KMultisectionNeuronCoverage | |||
>>> | |||
>>> class Net(nn.Cell): | |||
>>> def __init__(self): | |||
>>> super(Net, self).__init__() | |||
>>> self.conv1 = nn.Conv2d(1, 6, 5, padding=0, weight_init=TruncatedNormal(0.02), pad_mode="valid") | |||
>>> self.conv2 = nn.Conv2d(6, 16, 5, padding=0, weight_init=TruncatedNormal(0.02), pad_mode="valid") | |||
>>> self.fc1 = nn.Dense(16 * 5 * 5, 120, TruncatedNormal(0.02), TruncatedNormal(0.02)) | |||
>>> self.fc2 = nn.Dense(120, 84, TruncatedNormal(0.02), TruncatedNormal(0.02)) | |||
>>> self.fc3 = nn.Dense(84, 10, TruncatedNormal(0.02), TruncatedNormal(0.02)) | |||
>>> self.relu = nn.ReLU() | |||
>>> self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||
>>> self.reshape = P.Reshape() | |||
>>> self.summary = TensorSummary() | |||
>>> | |||
>>> def construct(self, x): | |||
>>> x = self.conv1(x) | |||
>>> x = self.relu(x) | |||
>>> self.summary('conv1', x) | |||
>>> x = self.max_pool2d(x) | |||
>>> x = self.conv2(x) | |||
>>> x = self.relu(x) | |||
>>> self.summary('conv2', x) | |||
>>> x = self.max_pool2d(x) | |||
>>> x = self.reshape(x, (-1, 16 * 5 * 5)) | |||
>>> x = self.fc1(x) | |||
>>> x = self.relu(x) | |||
>>> self.summary('fc1', x) | |||
>>> x = self.fc2(x) | |||
>>> x = self.relu(x) | |||
>>> self.summary('fc2', x) | |||
>>> x = self.fc3(x) | |||
>>> self.summary('fc3', x) | |||
>>> return x | |||
>>> | |||
>>> net = Net() | |||
>>> model = Model(net) | |||
>>> mutate_config = [{'method': 'Blur', | |||
... 'params': {'auto_param': [True]}}, | |||
>>> mutate_config = [{'method': 'GaussianBlur', | |||
... 'params': {'ksize': [1, 2, 3, 5], 'auto_param': [True, False]}}, | |||
... {'method': 'MotionBlur', | |||
... 'params': {'degree': [1, 2, 5], 'angle': [45, 10, 100, 140, 210, 270, 300], | |||
... 'auto_param': [True]}}, | |||
... {'method': 'UniformNoise', | |||
... 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
... {'method': 'GaussianNoise', | |||
... 'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
... {'method': 'Contrast', | |||
... 'params': {'factor': [2]}}, | |||
... {'method': 'Translate', | |||
... 'params': {'x_bias': [0.1, 0.2], 'y_bias': [0.2]}}, | |||
... 'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
... {'method': 'Rotate', | |||
... 'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
... {'method': 'FGSM', | |||
... 'params': {'eps': [0.1, 0.2, 0.3], 'alpha': [0.1]}}] | |||
>>> nc = KMultisectionNeuronCoverage(model, train_images, segmented_num=100) | |||
... 'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
>>> batch_size = 8 | |||
>>> num_classe = 10 | |||
>>> train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||
>>> test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) | |||
>>> test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32) | |||
>>> test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32) | |||
>>> initial_seeds = [] | |||
>>> # make initial seeds | |||
>>> for img, label in zip(test_images, test_labels): | |||
>>> initial_seeds.append([img, label]) | |||
>>> initial_seeds = initial_seeds[:10] | |||
>>> nc = KMultisectionNeuronCoverage(model, train_images, segmented_num=100, incremental=True) | |||
>>> model_fuzz_test = Fuzzer(model) | |||
>>> samples, gt_labels, preds, strategies, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds, | |||
... nc, max_iters=100) | |||
@@ -125,18 +187,26 @@ class Fuzzer: | |||
# Allowed mutate strategies so far. | |||
self._strategies = {'Contrast': Contrast, | |||
'Brightness': Brightness, | |||
'Blur': Blur, | |||
'Noise': Noise, | |||
'GradientLuminance': GradientLuminance, | |||
'GaussianBlur': GaussianBlur, | |||
'MotionBlur': MotionBlur, | |||
'GradientBlur': GradientBlur, | |||
'UniformNoise': UniformNoise, | |||
'GaussianNoise': GaussianNoise, | |||
'SaltAndPepperNoise': SaltAndPepperNoise, | |||
'NaturalNoise': NaturalNoise, | |||
'Translate': Translate, | |||
'Scale': Scale, | |||
'Shear': Shear, | |||
'Rotate': Rotate, | |||
'Perspective': Perspective, | |||
'Curve': Curve, | |||
'FGSM': FastGradientSignMethod, | |||
'PGD': ProjectedGradientDescent, | |||
'MDIIM': MomentumDiverseInputIterativeMethod} | |||
self._affine_trans_list = ['Translate', 'Scale', 'Shear', 'Rotate'] | |||
self._pixel_value_trans_list = ['Contrast', 'Brightness', 'Blur', 'Noise'] | |||
self._affine_trans_list = ['Translate', 'Scale', 'Shear', 'Rotate', 'Perspective', 'Curve'] | |||
self._pixel_value_trans_list = ['Contrast', 'GradientLuminance', 'GaussianBlur', 'MotionBlur', 'GradientBlur', | |||
'UniformNoise', 'GaussianNoise', 'SaltAndPepperNoise', 'NaturalNoise'] | |||
self._attacks_list = ['FGSM', 'PGD', 'MDIIM'] | |||
self._attack_param_checklists = { | |||
'FGSM': {'eps': {'dtype': [float], 'range': [0, 1]}, | |||
@@ -144,10 +214,11 @@ class Fuzzer: | |||
'bounds': {'dtype': [tuple, list]}}, | |||
'PGD': {'eps': {'dtype': [float], 'range': [0, 1]}, | |||
'eps_iter': {'dtype': [float], 'range': [0, 1]}, | |||
'nb_iter': {'dtype': [int], 'range': [0, 100000]}, | |||
'nb_iter': {'dtype': [int]}, | |||
'bounds': {'dtype': [tuple, list]}}, | |||
'MDIIM': {'eps': {'dtype': [float], 'range': [0, 1]}, | |||
'norm_level': {'dtype': [str, int], 'range': [1, 2, '1', '2', 'l1', 'l2', 'inf', 'np.inf']}, | |||
'norm_level': {'dtype': [str, int], | |||
'range': [1, 2, '1', '2', 'l1', 'l2', 'inf', 'linf', 'np.inf']}, | |||
'prob': {'dtype': [float], 'range': [0, 1]}, | |||
'bounds': {'dtype': [tuple, list]}}} | |||
@@ -157,18 +228,26 @@ class Fuzzer: | |||
Args: | |||
mutate_config (list): Mutate configs. The format is | |||
[{'method': 'Blur', | |||
'params': {'radius': [0.1, 0.2], 'auto_param': [True, False]}}, | |||
{'method': 'Contrast', | |||
'params': {'factor': [1, 1.5, 2]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1]}}, | |||
...]. | |||
[{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], 'auto_param': [True, False]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'GaussianNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
...]. | |||
The supported methods list is in `self._strategies`, and the params of each method must within the | |||
range of optional parameters. Supported methods are grouped in three types: Firstly, pixel value based | |||
transform methods include: 'Contrast', 'Brightness', 'Blur' and 'Noise'. Secondly, affine transform | |||
methods include: 'Translate', 'Scale', 'Shear' and 'Rotate'. Thirdly, attack methods include: 'FGSM', | |||
'PGD' and 'MDIIM'. `mutate_config` must have method in the type of pixel value based transform methods. | |||
'PGD' and 'MDIIM'. 'FGSM', 'PGD' and 'MDIIM'. are abbreviations of FastGradientSignMethod, | |||
ProjectedGradientDescent and MomentumDiverseInputIterativeMethod. | |||
`mutate_config` must have method in the type of pixel value based transform methods. | |||
The way of setting parameters for first and second type methods can be seen in | |||
'mindarmour/fuzz_testing/image_transform.py'. For third type methods, the optional parameters refer to | |||
`self._attack_param_checklists`. | |||
@@ -278,7 +357,6 @@ class Fuzzer: | |||
if only_pixel_trans: | |||
while strategy['method'] not in self._pixel_value_trans_list: | |||
strategy = choice(mutate_config) | |||
transform = mutates[strategy['method']] | |||
params = strategy['params'] | |||
method = strategy['method'] | |||
selected_param = {} | |||
@@ -290,9 +368,10 @@ class Fuzzer: | |||
shear_keys = selected_param.keys() | |||
if 'factor_x' in shear_keys and 'factor_y' in shear_keys: | |||
selected_param[choice(['factor_x', 'factor_y'])] = 0 | |||
transform.set_params(**selected_param) | |||
mutate_sample = transform.transform(seed[0]) | |||
transform = mutates[strategy['method']](**selected_param) | |||
mutate_sample = transform(seed[0]) | |||
else: | |||
transform = mutates[strategy['method']] | |||
for param_name in selected_param: | |||
transform.__setattr__('_' + str(param_name), selected_param[param_name]) | |||
mutate_sample = transform.generate(np.array([seed[0].astype(np.float32)]), np.array([seed[1]]))[0] | |||
@@ -360,6 +439,8 @@ class Fuzzer: | |||
_ = check_param_bounds('bounds', param_value) | |||
elif param_name == 'norm_level': | |||
_ = check_norm_level(param_value) | |||
elif param_name == 'nb_iter': | |||
_ = check_int_positive(param_name, param_value) | |||
else: | |||
allow_type = self._attack_param_checklists[method][param_name]['dtype'] | |||
allow_range = self._attack_param_checklists[method][param_name]['range'] | |||
@@ -372,7 +453,8 @@ class Fuzzer: | |||
for mutate in mutate_config: | |||
method = mutate['method'] | |||
if method not in self._attacks_list: | |||
mutates[method] = self._strategies[method]() | |||
# mutates[method] = self._strategies[method]() | |||
mutates[method] = self._strategies[method] | |||
else: | |||
network = self._target_model._network | |||
loss_fn = self._target_model._loss_fn | |||
@@ -414,7 +496,6 @@ class Fuzzer: | |||
else: | |||
attack_success_rate = None | |||
metrics_report['Attack_success_rate'] = attack_success_rate | |||
metrics_report['Coverage_metrics'] = coverage.get_metrics(fuzz_samples) | |||
return metrics_report |
@@ -1,609 +0,0 @@ | |||
# Copyright 2019 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Image transform | |||
""" | |||
import numpy as np | |||
from PIL import Image, ImageEnhance, ImageFilter | |||
from mindspore.dataset.vision.py_transforms_util import is_numpy, \ | |||
to_pil, hwc_to_chw | |||
from mindarmour.utils._check_param import check_param_multi_types, check_param_in_range, check_numpy_param | |||
from mindarmour.utils.logger import LogUtil | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image Transformation' | |||
def chw_to_hwc(img): | |||
""" | |||
Transpose the input image; shape (C, H, W) to shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be converted. | |||
Returns: | |||
img (numpy.ndarray), Converted image. | |||
""" | |||
if is_numpy(img): | |||
return img.transpose(1, 2, 0).copy() | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def is_hwc(img): | |||
""" | |||
Check if the input image is shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is shape (H, W, C). | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if img_shape[2] == 3 and img_shape[1] > 3 and img_shape[0] > 3: | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def is_chw(img): | |||
""" | |||
Check if the input image is shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is shape (H, W, C). | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if img_shape[0] == 3 and img_shape[1] > 3 and img_shape[2] > 3: | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def is_rgb(img): | |||
""" | |||
Check if the input image is RGB. | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is RGB. | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if len(np.shape(img)) == 3 and (img_shape[0] == 3 or img_shape[2] == 3): | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def is_normalized(img): | |||
""" | |||
Check if the input image is normalized between 0 to 1. | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is normalized between 0 to 1. | |||
""" | |||
if is_numpy(img): | |||
minimal = np.min(img) | |||
maximun = np.max(img) | |||
if minimal >= 0 and maximun <= 1: | |||
return True | |||
return False | |||
raise TypeError('img should be Numpy array. Got {}'.format(type(img))) | |||
class ImageTransform: | |||
""" | |||
The abstract base class for all image transform classes. | |||
""" | |||
def __init__(self): | |||
pass | |||
def _check(self, image): | |||
""" Check image format. If input image is RGB and its shape | |||
is (C, H, W), it will be transposed to (H, W, C). If the value | |||
of the image is not normalized , it will be normalized between 0 to 1.""" | |||
rgb = is_rgb(image) | |||
chw = False | |||
gray3dim = False | |||
normalized = is_normalized(image) | |||
if rgb: | |||
chw = is_chw(image) | |||
if chw: | |||
image = chw_to_hwc(image) | |||
else: | |||
image = image | |||
else: | |||
if len(np.shape(image)) == 3: | |||
gray3dim = True | |||
image = image[0] | |||
else: | |||
image = image | |||
if normalized: | |||
image = image*255 | |||
return rgb, chw, normalized, gray3dim, np.uint8(image) | |||
def _original_format(self, image, chw, normalized, gray3dim): | |||
""" Return transformed image with original format. """ | |||
if not is_numpy(image): | |||
image = np.array(image) | |||
if chw: | |||
image = hwc_to_chw(image) | |||
if normalized: | |||
image = image / 255 | |||
if gray3dim: | |||
image = np.expand_dims(image, 0) | |||
return image | |||
def transform(self, image): | |||
pass | |||
class Contrast(ImageTransform): | |||
""" | |||
Contrast of an image. | |||
Args: | |||
factor (Union[float, int]): Control the contrast of an image. If 1.0, | |||
gives the original image. If 0, gives a gray image. Default: 1. | |||
""" | |||
def __init__(self, factor=1): | |||
super(Contrast, self).__init__() | |||
self.set_params(factor) | |||
def set_params(self, factor=1, auto_param=False): | |||
""" | |||
Set contrast parameters. | |||
Args: | |||
factor (Union[float, int]): Control the contrast of an image. If 1.0 | |||
gives the original image. If 0 gives a gray image. Default: 1. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.factor = np.random.uniform(-5, 5) | |||
else: | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
image = to_pil(image) | |||
img_contrast = ImageEnhance.Contrast(image) | |||
trans_image = img_contrast.enhance(self.factor) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Brightness(ImageTransform): | |||
""" | |||
Brightness of an image. | |||
Args: | |||
factor (Union[float, int]): Control the brightness of an image. If 1.0 | |||
gives the original image. If 0 gives a black image. Default: 1. | |||
""" | |||
def __init__(self, factor=1): | |||
super(Brightness, self).__init__() | |||
self.set_params(factor) | |||
def set_params(self, factor=1, auto_param=False): | |||
""" | |||
Set brightness parameters. | |||
Args: | |||
factor (Union[float, int]): Control the brightness of an image. If 1 | |||
gives the original image. If 0 gives a black image. Default: 1. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.factor = np.random.uniform(0, 5) | |||
else: | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
image = to_pil(image) | |||
img_contrast = ImageEnhance.Brightness(image) | |||
trans_image = img_contrast.enhance(self.factor) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Blur(ImageTransform): | |||
""" | |||
Blurs the image using Gaussian blur filter. | |||
Args: | |||
radius(Union[float, int]): Blur radius, 0 means no blur. Default: 0. | |||
""" | |||
def __init__(self, radius=0): | |||
super(Blur, self).__init__() | |||
self.set_params(radius) | |||
def set_params(self, radius=0, auto_param=False): | |||
""" | |||
Set blur parameters. | |||
Args: | |||
radius (Union[float, int]): Blur radius, 0 means no blur. Default: 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.radius = np.random.uniform(-1.5, 1.5) | |||
else: | |||
self.radius = check_param_multi_types('radius', radius, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
image = to_pil(image) | |||
trans_image = image.filter(ImageFilter.GaussianBlur(radius=self.radius)) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Noise(ImageTransform): | |||
""" | |||
Add noise of an image. | |||
Args: | |||
factor (float): factor is the ratio of pixels to add noise. | |||
If 0 gives the original image. Default 0. | |||
""" | |||
def __init__(self, factor=0): | |||
super(Noise, self).__init__() | |||
self.set_params(factor) | |||
def set_params(self, factor=0, auto_param=False): | |||
""" | |||
Set noise parameters. | |||
Args: | |||
factor (Union[float, int]): factor is the ratio of pixels to | |||
add noise. If 0 gives the original image. Default 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.factor = np.random.uniform(0, 1) | |||
else: | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
noise = np.random.uniform(low=-1, high=1, size=np.shape(image)) | |||
trans_image = np.copy(image) | |||
threshold = 1 - self.factor | |||
trans_image[noise < -threshold] = 0 | |||
trans_image[noise > threshold] = 1 | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Translate(ImageTransform): | |||
""" | |||
Translate an image. | |||
Args: | |||
x_bias (Union[int, float]): X-direction translation, x = x + x_bias*image_length. | |||
Default: 0. | |||
y_bias (Union[int, float]): Y-direction translation, y = y + y_bias*image_wide. | |||
Default: 0. | |||
""" | |||
def __init__(self, x_bias=0, y_bias=0): | |||
super(Translate, self).__init__() | |||
self.set_params(x_bias, y_bias) | |||
def set_params(self, x_bias=0, y_bias=0, auto_param=False): | |||
""" | |||
Set translate parameters. | |||
Args: | |||
x_bias (Union[float, int]): X-direction translation, and x_bias should be in range of (-1, 1). Default: 0. | |||
y_bias (Union[float, int]): Y-direction translation, and y_bias should be in range of (-1, 1). Default: 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
x_bias = check_param_in_range('x_bias', x_bias, -1, 1) | |||
y_bias = check_param_in_range('y_bias', y_bias, -1, 1) | |||
self.auto_param = auto_param | |||
if auto_param: | |||
self.x_bias = np.random.uniform(-0.3, 0.3) | |||
self.y_bias = np.random.uniform(-0.3, 0.3) | |||
else: | |||
self.x_bias = check_param_multi_types('x_bias', x_bias, | |||
[int, float]) | |||
self.y_bias = check_param_multi_types('y_bias', y_bias, | |||
[int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image(numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
img = to_pil(image) | |||
image_shape = np.shape(image) | |||
self.x_bias = image_shape[1]*self.x_bias | |||
self.y_bias = image_shape[0]*self.y_bias | |||
trans_image = img.transform(img.size, Image.AFFINE, | |||
(1, 0, self.x_bias, 0, 1, self.y_bias)) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Scale(ImageTransform): | |||
""" | |||
Scale an image in the middle. | |||
Args: | |||
factor_x (Union[float, int]): Rescale in X-direction, x=factor_x*x. | |||
Default: 1. | |||
factor_y (Union[float, int]): Rescale in Y-direction, y=factor_y*y. | |||
Default: 1. | |||
""" | |||
def __init__(self, factor_x=1, factor_y=1): | |||
super(Scale, self).__init__() | |||
self.set_params(factor_x, factor_y) | |||
def set_params(self, factor_x=1, factor_y=1, auto_param=False): | |||
""" | |||
Set scale parameters. | |||
Args: | |||
factor_x (Union[float, int]): Rescale in X-direction, x=factor_x*x. | |||
Default: 1. | |||
factor_y (Union[float, int]): Rescale in Y-direction, y=factor_y*y. | |||
Default: 1. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.factor_x = np.random.uniform(0.7, 3) | |||
self.factor_y = np.random.uniform(0.7, 3) | |||
else: | |||
self.factor_x = check_param_multi_types('factor_x', factor_x, | |||
[int, float]) | |||
self.factor_y = check_param_multi_types('factor_y', factor_y, | |||
[int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image(numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
rgb, chw, normalized, gray3dim, image = self._check(image) | |||
if rgb: | |||
h, w, _ = np.shape(image) | |||
else: | |||
h, w = np.shape(image) | |||
move_x_centor = w / 2*(1 - self.factor_x) | |||
move_y_centor = h / 2*(1 - self.factor_y) | |||
img = to_pil(image) | |||
trans_image = img.transform(img.size, Image.AFFINE, | |||
(self.factor_x, 0, move_x_centor, | |||
0, self.factor_y, move_y_centor)) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Shear(ImageTransform): | |||
""" | |||
Shear an image, for each pixel (x, y) in the sheared image, the new value is | |||
taken from a position (x+factor_x*y, factor_y*x+y) in the origin image. Then | |||
the sheared image will be rescaled to fit original size. | |||
Args: | |||
factor_x (Union[float, int]): Shear factor of horizontal direction. | |||
Default: 0. | |||
factor_y (Union[float, int]): Shear factor of vertical direction. | |||
Default: 0. | |||
""" | |||
def __init__(self, factor_x=0, factor_y=0): | |||
super(Shear, self).__init__() | |||
self.set_params(factor_x, factor_y) | |||
def set_params(self, factor_x=0, factor_y=0, auto_param=False): | |||
""" | |||
Set shear parameters. | |||
Args: | |||
factor_x (Union[float, int]): Shear factor of horizontal direction. | |||
Default: 0. | |||
factor_y (Union[float, int]): Shear factor of vertical direction. | |||
Default: 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if factor_x != 0 and factor_y != 0: | |||
msg = 'At least one of factor_x and factor_y is zero.' | |||
LOGGER.error(TAG, msg) | |||
raise ValueError(msg) | |||
if auto_param: | |||
if np.random.uniform(-1, 1) > 0: | |||
self.factor_x = np.random.uniform(-2, 2) | |||
self.factor_y = 0 | |||
else: | |||
self.factor_x = 0 | |||
self.factor_y = np.random.uniform(-2, 2) | |||
else: | |||
self.factor_x = check_param_multi_types('factor', factor_x, | |||
[int, float]) | |||
self.factor_y = check_param_multi_types('factor', factor_y, | |||
[int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image(numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
rgb, chw, normalized, gray3dim, image = self._check(image) | |||
img = to_pil(image) | |||
if rgb: | |||
h, w, _ = np.shape(image) | |||
else: | |||
h, w = np.shape(image) | |||
if self.factor_x != 0: | |||
boarder_x = [0, -w, -self.factor_x*h, -w - self.factor_x*h] | |||
min_x = min(boarder_x) | |||
max_x = max(boarder_x) | |||
scale = (max_x - min_x) / w | |||
move_x_cen = (w - scale*w - scale*h*self.factor_x) / 2 | |||
move_y_cen = h*(1 - scale) / 2 | |||
else: | |||
boarder_y = [0, -h, -self.factor_y*w, -h - self.factor_y*w] | |||
min_y = min(boarder_y) | |||
max_y = max(boarder_y) | |||
scale = (max_y - min_y) / h | |||
move_y_cen = (h - scale*h - scale*w*self.factor_y) / 2 | |||
move_x_cen = w*(1 - scale) / 2 | |||
trans_image = img.transform(img.size, Image.AFFINE, | |||
(scale, scale*self.factor_x, move_x_cen, | |||
scale*self.factor_y, scale, move_y_cen)) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class Rotate(ImageTransform): | |||
""" | |||
Rotate an image of degrees counter clockwise around its center. | |||
Args: | |||
angle(Union[float, int]): Degrees counter clockwise. Default: 0. | |||
""" | |||
def __init__(self, angle=0): | |||
super(Rotate, self).__init__() | |||
self.set_params(angle) | |||
def set_params(self, angle=0, auto_param=False): | |||
""" | |||
Set rotate parameters. | |||
Args: | |||
angle(Union[float, int]): Degrees counter clockwise. Default: 0. | |||
auto_param (bool): True if auto generate parameters. Default: False. | |||
""" | |||
if auto_param: | |||
self.angle = np.random.uniform(0, 360) | |||
else: | |||
self.angle = check_param_multi_types('angle', angle, [int, float]) | |||
def transform(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image(numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
image = check_numpy_param('image', image) | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
img = to_pil(image) | |||
trans_image = img.rotate(self.angle, expand=False) | |||
trans_image = self._original_format(trans_image, chw, normalized, | |||
gray3dim) | |||
return trans_image.astype(ori_dtype) |
@@ -154,13 +154,48 @@ class NeuronCoverage(CoverageMetrics): | |||
incremental (bool): Metrics will be calculate in incremental way or not. Default: False. | |||
batch_size (int): The number of samples in a fuzz test batch. Default: 32. | |||
Examples: | |||
>>> import numpy as np | |||
>>> from mindspore import nn | |||
>>> from mindspore.nn import Cell | |||
>>> from mindspore.train import Model | |||
>>> from mindspore import context | |||
>>> from mindspore.ops import TensorSummary | |||
>>> from mindarmour.fuzz_testing import NeuronCoverage | |||
>>> | |||
>>> class Net(Cell): | |||
>>> def __init__(self): | |||
>>> super(Net, self).__init__() | |||
>>> self._relu = nn.ReLU() | |||
>>> self.summary = TensorSummary() | |||
>>> | |||
>>> def construct(self, inputs): | |||
>>> self.summary('input', inputs) | |||
>>> out = self._relu(inputs) | |||
>>> self.summary('1', out) | |||
>>> return out | |||
>>> | |||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
>>> # load network | |||
>>> net = Net() | |||
>>> model = Model(net) | |||
>>> | |||
>>> # initialize fuzz test with training dataset | |||
>>> training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
>>> | |||
>>> # fuzz test with original test data | |||
>>> # get test data | |||
>>> test_data = (np.random.random((2000, 10))*20).astype(np.float32) | |||
>>> test_labels = np.random.randint(0, 10, 2000).astype(np.int32) | |||
>>> | |||
>>> nc = NeuronCoverage(model, threshold=0.1) | |||
>>> nc_metric = nc.get_metrics(test_data) | |||
""" | |||
def __init__(self, model, threshold=0.1, incremental=False, batch_size=32): | |||
super(NeuronCoverage, self).__init__(model, incremental, batch_size) | |||
threshold = check_param_type('threshold', threshold, float) | |||
self.threshold = check_value_positive('threshold', threshold) | |||
def get_metrics(self, dataset): | |||
""" | |||
Get the metric of neuron coverage: the proportion of activated neurons to total neurons in the network. | |||
@@ -170,10 +205,6 @@ class NeuronCoverage(CoverageMetrics): | |||
Returns: | |||
float, the metric of 'neuron coverage'. | |||
Examples: | |||
>>> nc = NeuronCoverage(model, threshold=0.1) | |||
>>> nc_metrics = nc.get_metrics(test_data) | |||
""" | |||
dataset = check_numpy_param('dataset', dataset) | |||
batches = math.ceil(dataset.shape[0] / self.batch_size) | |||
@@ -203,6 +234,43 @@ class TopKNeuronCoverage(CoverageMetrics): | |||
top_k (int): Neuron is activated when its output has the top k largest value in that hidden layers. Default: 3. | |||
incremental (bool): Metrics will be calculate in incremental way or not. Default: False. | |||
batch_size (int): The number of samples in a fuzz test batch. Default: 32. | |||
Examples: | |||
>>> import numpy as np | |||
>>> from mindspore import nn | |||
>>> from mindspore.nn import Cell | |||
>>> from mindspore.train import Model | |||
>>> from mindspore import context | |||
>>> from mindspore.ops import TensorSummary | |||
>>> from mindarmour.fuzz_testing import TopKNeuronCoverage | |||
>>> | |||
>>> class Net(Cell): | |||
>>> def __init__(self): | |||
>>> super(Net, self).__init__() | |||
>>> self._relu = nn.ReLU() | |||
>>> self.summary = TensorSummary() | |||
>>> | |||
>>> def construct(self, inputs): | |||
>>> self.summary('input', inputs) | |||
>>> out = self._relu(inputs) | |||
>>> self.summary('1', out) | |||
>>> return out | |||
>>> | |||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
>>> # load network | |||
>>> net = Net() | |||
>>> model = Model(net) | |||
>>> | |||
>>> # initialize fuzz test with training dataset | |||
>>> training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
>>> | |||
>>> # fuzz test with original test data | |||
>>> # get test data | |||
>>> test_data = (np.random.random((2000, 10))*20).astype(np.float32) | |||
>>> test_labels = np.random.randint(0, 10, 2000).astype(np.int32) | |||
>>> | |||
>>> tknc = TopKNeuronCoverage(model, top_k=3) | |||
>>> tknc_metrics = tknc.get_metrics(test_data) | |||
""" | |||
def __init__(self, model, top_k=3, incremental=False, batch_size=32): | |||
super(TopKNeuronCoverage, self).__init__(model, incremental=incremental, batch_size=batch_size) | |||
@@ -217,10 +285,6 @@ class TopKNeuronCoverage(CoverageMetrics): | |||
Returns: | |||
float, the metrics of 'top k neuron coverage'. | |||
Examples: | |||
>>> tknc = TopKNeuronCoverage(model, top_k=3) | |||
>>> metrics = tknc.get_metrics(test_data) | |||
""" | |||
dataset = check_numpy_param('dataset', dataset) | |||
batches = math.ceil(dataset.shape[0] / self.batch_size) | |||
@@ -252,6 +316,43 @@ class SuperNeuronActivateCoverage(CoverageMetrics): | |||
train_dataset (numpy.ndarray): Training dataset used for determine the neurons' output boundaries. | |||
incremental (bool): Metrics will be calculate in incremental way or not. Default: False. | |||
batch_size (int): The number of samples in a fuzz test batch. Default: 32. | |||
Examples: | |||
>>> import numpy as np | |||
>>> from mindspore import nn | |||
>>> from mindspore.nn import Cell | |||
>>> from mindspore.train import Model | |||
>>> from mindspore import context | |||
>>> from mindspore.ops import TensorSummary | |||
>>> from mindarmour.fuzz_testing import SuperNeuronActivateCoverage | |||
>>> | |||
>>> class Net(Cell): | |||
>>> def __init__(self): | |||
>>> super(Net, self).__init__() | |||
>>> self._relu = nn.ReLU() | |||
>>> self.summary = TensorSummary() | |||
>>> | |||
>>> def construct(self, inputs): | |||
>>> self.summary('input', inputs) | |||
>>> out = self._relu(inputs) | |||
>>> self.summary('1', out) | |||
>>> return out | |||
>>> | |||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
>>> # load network | |||
>>> net = Net() | |||
>>> model = Model(net) | |||
>>> | |||
>>> # initialize fuzz test with training dataset | |||
>>> training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
>>> | |||
>>> # fuzz test with original test data | |||
>>> # get test data | |||
>>> test_data = (np.random.random((2000, 10))*20).astype(np.float32) | |||
>>> test_labels = np.random.randint(0, 10, 2000).astype(np.int32) | |||
>>> | |||
>>> snac = SuperNeuronActivateCoverage(model, training_data) | |||
>>> snac_metrics = snac.get_metrics(test_data) | |||
""" | |||
def __init__(self, model, train_dataset, incremental=False, batch_size=32): | |||
super(SuperNeuronActivateCoverage, self).__init__(model, incremental=incremental, batch_size=batch_size) | |||
@@ -267,10 +368,6 @@ class SuperNeuronActivateCoverage(CoverageMetrics): | |||
Returns: | |||
float, the metric of 'strong neuron activation coverage'. | |||
Examples: | |||
>>> snac = SuperNeuronActivateCoverage(model, train_dataset) | |||
>>> metrics = snac.get_metrics(test_data) | |||
""" | |||
dataset = check_numpy_param('dataset', dataset) | |||
if not self.incremental or not self._activate_table: | |||
@@ -303,6 +400,43 @@ class NeuronBoundsCoverage(SuperNeuronActivateCoverage): | |||
train_dataset (numpy.ndarray): Training dataset used for determine the neurons' output boundaries. | |||
incremental (bool): Metrics will be calculate in incremental way or not. Default: False. | |||
batch_size (int): The number of samples in a fuzz test batch. Default: 32. | |||
Examples: | |||
>>> import numpy as np | |||
>>> from mindspore import nn | |||
>>> from mindspore.nn import Cell | |||
>>> from mindspore.train import Model | |||
>>> from mindspore import context | |||
>>> from mindspore.ops import TensorSummary | |||
>>> from mindarmour.fuzz_testing import NeuronBoundsCoverage | |||
>>> | |||
>>> class Net(Cell): | |||
>>> def __init__(self): | |||
>>> super(Net, self).__init__() | |||
>>> self._relu = nn.ReLU() | |||
>>> self.summary = TensorSummary() | |||
>>> | |||
>>> def construct(self, inputs): | |||
>>> self.summary('input', inputs) | |||
>>> out = self._relu(inputs) | |||
>>> self.summary('1', out) | |||
>>> return out | |||
>>> | |||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
>>> # load network | |||
>>> net = Net() | |||
>>> model = Model(net) | |||
>>> | |||
>>> # initialize fuzz test with training dataset | |||
>>> training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
>>> | |||
>>> # fuzz test with original test data | |||
>>> # get test data | |||
>>> test_data = (np.random.random((2000, 10))*20).astype(np.float32) | |||
>>> test_labels = np.random.randint(0, 10, 2000).astype(np.int32) | |||
>>> | |||
>>> nbc = NeuronBoundsCoverage(model, training_data) | |||
>>> nbc_metrics = nbc.get_metrics(test_data) | |||
""" | |||
def __init__(self, model, train_dataset, incremental=False, batch_size=32): | |||
@@ -317,10 +451,6 @@ class NeuronBoundsCoverage(SuperNeuronActivateCoverage): | |||
Returns: | |||
float, the metric of 'neuron boundary coverage'. | |||
Examples: | |||
>>> nbc = NeuronBoundsCoverage(model, train_dataset) | |||
>>> metrics = nbc.get_metrics(test_data) | |||
""" | |||
dataset = check_numpy_param('dataset', dataset) | |||
if not self.incremental or not self._activate_table: | |||
@@ -353,6 +483,43 @@ class KMultisectionNeuronCoverage(SuperNeuronActivateCoverage): | |||
segmented_num (int): The number of segmented sections of neurons' output intervals. Default: 100. | |||
incremental (bool): Metrics will be calculate in incremental way or not. Default: False. | |||
batch_size (int): The number of samples in a fuzz test batch. Default: 32. | |||
Examples: | |||
>>> import numpy as np | |||
>>> from mindspore import nn | |||
>>> from mindspore.nn import Cell | |||
>>> from mindspore.train import Model | |||
>>> from mindspore import context | |||
>>> from mindspore.ops import TensorSummary | |||
>>> from mindarmour.fuzz_testing import KMultisectionNeuronCoverage | |||
>>> | |||
>>> class Net(Cell): | |||
>>> def __init__(self): | |||
>>> super(Net, self).__init__() | |||
>>> self._relu = nn.ReLU() | |||
>>> self.summary = TensorSummary() | |||
>>> | |||
>>> def construct(self, inputs): | |||
>>> self.summary('input', inputs) | |||
>>> out = self._relu(inputs) | |||
>>> self.summary('1', out) | |||
>>> return out | |||
>>> | |||
>>> context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
>>> # load network | |||
>>> net = Net() | |||
>>> model = Model(net) | |||
>>> | |||
>>> # initialize fuzz test with training dataset | |||
>>> training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
>>> | |||
>>> # fuzz test with original test data | |||
>>> # get test data | |||
>>> test_data = (np.random.random((2000, 10))*20).astype(np.float32) | |||
>>> test_labels = np.random.randint(0, 10, 2000).astype(np.int32) | |||
>>> | |||
>>> kmnc = KMultisectionNeuronCoverage(model, training_data, segmented_num=100) | |||
>>> kmnc_metrics = kmnc.get_metrics(test_data) | |||
""" | |||
def __init__(self, model, train_dataset, segmented_num=100, incremental=False, batch_size=32): | |||
@@ -381,10 +548,6 @@ class KMultisectionNeuronCoverage(SuperNeuronActivateCoverage): | |||
Returns: | |||
float, the metric of 'k-multisection neuron coverage'. | |||
Examples: | |||
>>> kmnc = KMultisectionNeuronCoverage(model, train_dataset, segmented_num=100) | |||
>>> metrics = kmnc.get_metrics(test_data) | |||
""" | |||
dataset = check_numpy_param('dataset', dataset) | |||
@@ -0,0 +1,37 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
This package include methods to generate natural perturbation samples. | |||
""" | |||
from .transformation import Translate, Scale, Shear, Rotate, Perspective, Curve | |||
from .blur import GaussianBlur, MotionBlur, GradientBlur | |||
from .luminance import Contrast, GradientLuminance | |||
from .corruption import UniformNoise, GaussianNoise, SaltAndPepperNoise, NaturalNoise | |||
__all__ = ['Translate', | |||
'Scale', | |||
'Shear', | |||
'Rotate', | |||
'Perspective', | |||
'Curve', | |||
'GaussianBlur', | |||
'MotionBlur', | |||
'GradientBlur', | |||
'Contrast', | |||
'GradientLuminance', | |||
'UniformNoise', | |||
'GaussianNoise', | |||
'SaltAndPepperNoise', | |||
'NaturalNoise'] |
@@ -0,0 +1,193 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Image Blur | |||
""" | |||
import numpy as np | |||
import cv2 | |||
from mindarmour.natural_robustness.natural_perturb import _NaturalPerturb | |||
from mindarmour.utils._check_param import check_param_multi_types, check_int_positive, check_param_type | |||
from mindarmour.utils.logger import LogUtil | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image Blur' | |||
class GaussianBlur(_NaturalPerturb): | |||
""" | |||
Blurs the image using Gaussian blur filter. | |||
Args: | |||
ksize (int): Size of gaussian kernel, this value must be non-negnative. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> ksize = 5 | |||
>>> trans = GaussianBlur(ksize) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, ksize=2, auto_param=False): | |||
super(GaussianBlur, self).__init__() | |||
ksize = check_int_positive('ksize', ksize) | |||
if auto_param: | |||
ksize = 2 * np.random.randint(0, 5) + 1 | |||
else: | |||
ksize = 2 * ksize + 1 | |||
self.ksize = (ksize, ksize) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
new_img = cv2.GaussianBlur(image, self.ksize, 0) | |||
new_img = self._original_format(new_img, chw, normalized, gray3dim) | |||
return new_img.astype(ori_dtype) | |||
class MotionBlur(_NaturalPerturb): | |||
""" | |||
Motion blur for a given image. | |||
Args: | |||
degree (int): Degree of blur. This value must be positive. Suggested value range in [1, 15]. | |||
angle: (union[float, int]): Direction of motion blur. Angle=0 means up and down motion blur. Angle is | |||
counterclockwise. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> angle = 0 | |||
>>> degree = 5 | |||
>>> trans = MotionBlur(degree=degree, angle=angle) | |||
>>> new_img = trans(img) | |||
""" | |||
def __init__(self, degree=5, angle=45, auto_param=False): | |||
super(MotionBlur, self).__init__() | |||
self.degree = check_int_positive('degree', degree) | |||
self.degree = check_param_multi_types('degree', degree, [float, int]) | |||
auto_param = check_param_type('auto_param', auto_param, bool) | |||
if auto_param: | |||
self.degree = np.random.randint(1, 5) | |||
self.angle = np.random.uniform(0, 360) | |||
else: | |||
self.angle = angle - 45 | |||
def __call__(self, image): | |||
""" | |||
Motion blur for a given image. | |||
Args: | |||
image (numpy.ndarray): Original image. | |||
Returns: | |||
numpy.ndarray, image after motion blur. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
matrix = cv2.getRotationMatrix2D((self.degree / 2, self.degree / 2), self.angle, 1) | |||
motion_blur_kernel = np.diag(np.ones(self.degree)) | |||
motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, matrix, (self.degree, self.degree)) | |||
motion_blur_kernel = motion_blur_kernel / self.degree | |||
blurred = cv2.filter2D(image, -1, motion_blur_kernel) | |||
# convert to uint8 | |||
cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX) | |||
blurred = self._original_format(blurred, chw, normalized, gray3dim) | |||
return blurred.astype(ori_dtype) | |||
class GradientBlur(_NaturalPerturb): | |||
""" | |||
Gradient blur. | |||
Args: | |||
point (union[tuple, list]): 2D coordinate of the Blur center point. | |||
kernel_num (int): Number of blur kernels. Suggested value range in [1, 8]. | |||
center (bool): Blurred or clear at the center of a specified point. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('xx.png') | |||
>>> img = np.array(img) | |||
>>> number = 5 | |||
>>> h, w = img.shape[:2] | |||
>>> point = (int(h / 5), int(w / 5)) | |||
>>> center = True | |||
>>> trans = GradientBlur(point, number, center) | |||
>>> new_img = trans(img) | |||
""" | |||
def __init__(self, point, kernel_num=3, center=True, auto_param=False): | |||
super(GradientBlur).__init__() | |||
point = check_param_multi_types('point', point, [list, tuple]) | |||
self.auto_param = check_param_type('auto_param', auto_param, bool) | |||
self.point = tuple(point) | |||
self.kernel_num = check_int_positive('kernel_num', kernel_num) | |||
self.center = check_param_type('center', center, bool) | |||
def _auto_param(self, h, w): | |||
self.point = (int(np.random.uniform(0, h)), int(np.random.uniform(0, w))) | |||
self.kernel_num = np.random.randint(1, 6) | |||
self.center = np.random.choice([True, False]) | |||
def __call__(self, image): | |||
""" | |||
Args: | |||
image (numpy.ndarray): Original image. | |||
Returns: | |||
numpy.ndarray, gradient blurred image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
w, h = image.shape[:2] | |||
if self.auto_param: | |||
self._auto_param(h, w) | |||
mask = np.zeros(image.shape, dtype=np.uint8) | |||
masks = [] | |||
radius = max(w - self.point[0], self.point[0], h - self.point[1], self.point[1]) | |||
radius = int(radius / self.kernel_num) | |||
for i in range(self.kernel_num): | |||
circle = cv2.circle(mask.copy(), self.point, radius * (1 + i), (1, 1, 1), -1) | |||
masks.append(circle) | |||
blurs = [] | |||
for i in range(3, 3 + 2 * self.kernel_num, 2): | |||
ksize = (i, i) | |||
blur = cv2.GaussianBlur(image, ksize, 0) | |||
blurs.append(blur) | |||
dst = image.copy() | |||
if self.center: | |||
for i in range(self.kernel_num): | |||
dst = masks[i] * dst + (1 - masks[i]) * blurs[i] | |||
else: | |||
for i in range(self.kernel_num - 1, -1, -1): | |||
dst = masks[i] * blurs[self.kernel_num - 1 - i] + (1 - masks[i]) * dst | |||
dst = self._original_format(dst, chw, normalized, gray3dim) | |||
return dst.astype(ori_dtype) |
@@ -0,0 +1,251 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Image corruption. | |||
""" | |||
import math | |||
import numpy as np | |||
import cv2 | |||
from mindarmour.natural_robustness.natural_perturb import _NaturalPerturb | |||
from mindarmour.utils._check_param import check_param_multi_types, check_param_type | |||
from mindarmour.utils.logger import LogUtil | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image corruption' | |||
class UniformNoise(_NaturalPerturb): | |||
""" | |||
Add uniform noise of an image. | |||
Args: | |||
factor (float): Noise density, the proportion of noise points per unit pixel area. Suggested value range in | |||
[0.001, 0.15]. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> factor = 0.1 | |||
>>> trans = UniformNoise(factor) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, factor=0.1, auto_param=False): | |||
super(UniformNoise, self).__init__() | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
check_param_type('auto_param', auto_param, bool) | |||
if auto_param: | |||
self.factor = np.random.uniform(0, 0.15) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
low, high = (0, 255) | |||
weight = self.factor * (high - low) | |||
noise = np.random.uniform(-weight, weight, size=image.shape) | |||
trans_image = np.clip(image + noise, low, high) | |||
trans_image = self._original_format(trans_image, chw, normalized, gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class GaussianNoise(_NaturalPerturb): | |||
""" | |||
Add gaussian noise of an image. | |||
Args: | |||
factor (float): Noise density, the proportion of noise points per unit pixel area. Suggested value range in | |||
[0.001, 0.15]. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> factor = 0.1 | |||
>>> trans = GaussianNoise(factor) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, factor=0.1, auto_param=False): | |||
super(GaussianNoise, self).__init__() | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
check_param_type('auto_param', auto_param, bool) | |||
if auto_param: | |||
self.factor = np.random.uniform(0, 0.15) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
low, high = (0, 255) | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
std = self.factor / math.sqrt(3) * (high - low) | |||
noise = np.random.normal(scale=std, size=image.shape) | |||
trans_image = np.clip(image + noise, low, high) | |||
trans_image = self._original_format(trans_image, chw, normalized, gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class SaltAndPepperNoise(_NaturalPerturb): | |||
""" | |||
Add salt and pepper noise of an image. | |||
Args: | |||
factor (float): Noise density, the proportion of noise points per unit pixel area. Suggested value range in | |||
[0.001, 0.15]. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> factor = 0.1 | |||
>>> trans = SaltAndPepperNoise(factor) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, factor=0, auto_param=False): | |||
super(SaltAndPepperNoise, self).__init__() | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
check_param_type('auto_param', auto_param, bool) | |||
if auto_param: | |||
self.factor = np.random.uniform(0, 0.15) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
low, high = (0, 255) | |||
noise = np.random.uniform(low=-1, high=1, size=(image.shape[0], image.shape[1])) | |||
trans_image = np.copy(image) | |||
threshold = 1 - self.factor | |||
trans_image[noise < -threshold] = low | |||
trans_image[noise > threshold] = high | |||
trans_image = self._original_format(trans_image, chw, normalized, gray3dim) | |||
return trans_image.astype(ori_dtype) | |||
class NaturalNoise(_NaturalPerturb): | |||
""" | |||
Add natural noise to an image. | |||
Args: | |||
ratio (float): Noise density, the proportion of noise blocks per unit pixel area. Suggested value range in | |||
[0.00001, 0.001]. | |||
k_x_range (union[list, tuple]): Value range of the noise block length. | |||
k_y_range (union[list, tuple]): Value range of the noise block width. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Examples: | |||
>>> img = cv2.imread('xx.png') | |||
>>> img = np.array(img) | |||
>>> ratio = 0.0002 | |||
>>> k_x_range = (1, 5) | |||
>>> k_y_range = (3, 25) | |||
>>> trans = NaturalNoise(ratio, k_x_range, k_y_range) | |||
>>> new_img = trans(img) | |||
""" | |||
def __init__(self, ratio=0.0002, k_x_range=(1, 5), k_y_range=(3, 25), auto_param=False): | |||
super(NaturalNoise).__init__() | |||
self.ratio = check_param_type('ratio', ratio, float) | |||
k_x_range = check_param_multi_types('k_x_range', k_x_range, [list, tuple]) | |||
k_y_range = check_param_multi_types('k_y_range', k_y_range, [list, tuple]) | |||
self.k_x_range = tuple(k_x_range) | |||
self.k_y_range = tuple(k_y_range) | |||
self.auto_param = check_param_type('auto_param', auto_param, bool) | |||
def __call__(self, image): | |||
""" | |||
Add natural noise to given image. | |||
Args: | |||
image (numpy.ndarray): Original image. | |||
Returns: | |||
numpy.ndarray, image with natural noise. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
randon_range = 100 | |||
w, h = image.shape[:2] | |||
channel = len(np.shape(image)) | |||
if self.auto_param: | |||
self.ratio = np.random.uniform(0, 0.001) | |||
self.k_x_range = (1, 0.1 * w) | |||
self.k_y_range = (1, 0.1 * h) | |||
for _ in range(5): | |||
if channel == 3: | |||
noise = np.ones((w, h, 3), dtype=np.uint8) * 255 | |||
dst = np.ones((w, h, 3), dtype=np.uint8) * 255 | |||
else: | |||
noise = np.ones((w, h), dtype=np.uint8) * 255 | |||
dst = np.ones((w, h), dtype=np.uint8) * 255 | |||
rate = self.ratio / 5 | |||
mask = np.random.uniform(size=(w, h)) < rate | |||
noise[mask] = np.random.randint(0, randon_range) | |||
k_x, k_y = np.random.randint(*self.k_x_range), np.random.randint(*self.k_y_range) | |||
kernel = np.ones((k_x, k_y), np.uint8) | |||
erode = cv2.erode(noise, kernel, iterations=1) | |||
dst = erode * (erode < randon_range) + dst * (1 - erode < randon_range) | |||
# Add black point | |||
for _ in range(np.random.randint(math.ceil(k_x * k_y / 2))): | |||
x = np.random.randint(-k_x, k_x) | |||
y = np.random.randint(-k_y, k_y) | |||
matrix = np.array([[1, 0, y], [0, 1, x]], dtype=np.float) | |||
affine = cv2.warpAffine(noise, matrix, (h, w)) | |||
dst = affine * (affine < randon_range) + dst * (1 - affine < randon_range) | |||
# Add white point | |||
for _ in range(int(k_x * k_y / 2)): | |||
x = np.random.randint(-k_x / 2 - 1, k_x / 2 + 1) | |||
y = np.random.randint(-k_y / 2 - 1, k_y / 2 + 1) | |||
matrix = np.array([[1, 0, y], [0, 1, x]], dtype=np.float) | |||
affine = cv2.warpAffine(noise, matrix, (h, w)) | |||
white = affine < randon_range | |||
dst[white] = 255 | |||
mask = dst < randon_range | |||
dst = image * (1 - mask) + dst * mask | |||
dst = self._original_format(dst, chw, normalized, gray3dim) | |||
return dst.astype(ori_dtype) |
@@ -0,0 +1,287 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Image luminance. | |||
""" | |||
import math | |||
import numpy as np | |||
import cv2 | |||
from mindarmour.natural_robustness.natural_perturb import _NaturalPerturb | |||
from mindarmour.utils._check_param import check_param_multi_types, check_param_in_range, check_param_type, \ | |||
check_value_non_negative | |||
from mindarmour.utils.logger import LogUtil | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image Luminance' | |||
class Contrast(_NaturalPerturb): | |||
""" | |||
Contrast of an image. | |||
Args: | |||
alpha (Union[float, int]): Control the contrast of an image. :math:`out_image = in_image*alpha+beta`. | |||
Suggested value range in [0.2, 2]. | |||
beta (Union[float, int]): Delta added to alpha. Default: 0. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> alpha = 0.1 | |||
>>> beta = 1 | |||
>>> trans = Contrast(alpha, beta) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, alpha=1, beta=0, auto_param=False): | |||
super(Contrast, self).__init__() | |||
self.alpha = check_param_multi_types('factor', alpha, [int, float]) | |||
self.beta = check_param_multi_types('factor', beta, [int, float]) | |||
auto_param = check_param_type('auto_param', auto_param, bool) | |||
if auto_param: | |||
self.alpha = np.random.uniform(0.2, 2) | |||
self.beta = np.random.uniform(-20, 20) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
dst = cv2.convertScaleAbs(image, alpha=self.alpha, beta=self.beta) | |||
dst = self._original_format(dst, chw, normalized, gray3dim) | |||
return dst.astype(ori_dtype) | |||
def _circle_gradient_mask(img_src, color_start, color_end, scope=0.5, point=None): | |||
""" | |||
Generate circle gradient mask. | |||
Args: | |||
img_src (numpy.ndarray): Source image. | |||
color_start (union([tuple, list])): Color of circle gradient center. | |||
color_end (union([tuple, list])): Color of circle gradient edge. | |||
scope (float): Range of the gradient. A larger value indicates a larger gradient range. | |||
point (union([tuple, list]): Gradient center point. | |||
Returns: | |||
numpy.ndarray, gradients mask. | |||
""" | |||
if not isinstance(img_src, np.ndarray): | |||
raise TypeError('`src` must be numpy.ndarray type, but got {0}.'.format(type(img_src))) | |||
shape = img_src.shape | |||
height, width = shape[:2] | |||
rgb = False | |||
if len(shape) == 3: | |||
rgb = True | |||
if point is None: | |||
point = (height // 2, width // 2) | |||
x, y = point | |||
# upper left | |||
bound_upper_left = math.ceil(math.sqrt(x ** 2 + y ** 2)) | |||
# upper right | |||
bound_upper_right = math.ceil(math.sqrt(height ** 2 + (width - y) ** 2)) | |||
# lower left | |||
bound_lower_left = math.ceil(math.sqrt((height - x) ** 2 + y ** 2)) | |||
# lower right | |||
bound_lower_right = math.ceil(math.sqrt((height - x) ** 2 + (width - y) ** 2)) | |||
radius = max(bound_lower_left, bound_lower_right, bound_upper_left, bound_upper_right) * scope | |||
img_grad = np.ones_like(img_src, dtype=np.uint8) * max(color_end) | |||
# opencv use BGR format | |||
grad_b = float(color_end[0] - color_start[0]) / radius | |||
grad_g = float(color_end[1] - color_start[1]) / radius | |||
grad_r = float(color_end[2] - color_start[2]) / radius | |||
for i in range(height): | |||
for j in range(width): | |||
distance = math.ceil(math.sqrt((x - i) ** 2 + (y - j) ** 2)) | |||
if distance >= radius: | |||
continue | |||
if rgb: | |||
img_grad[i, j, 0] = color_start[0] + distance * grad_b | |||
img_grad[i, j, 1] = color_start[1] + distance * grad_g | |||
img_grad[i, j, 2] = color_start[2] + distance * grad_r | |||
else: | |||
img_grad[i, j] = color_start[0] + distance * grad_b | |||
return img_grad.astype(np.uint8) | |||
def _line_gradient_mask(image, start_pos=None, start_color=(0, 0, 0), end_color=(255, 255, 255), mode='horizontal'): | |||
""" | |||
Generate liner gradient mask. | |||
Args: | |||
image (numpy.ndarray): Original image. | |||
start_pos (union[tuple, list]): 2D coordinate of gradient center. | |||
start_color (union([tuple, list])): Color of circle gradient center. | |||
end_color (union([tuple, list])): Color of circle gradient edge. | |||
mode (str): Direction of gradient. Optional value is 'vertical' or 'horizontal'. | |||
Returns: | |||
numpy.ndarray, gradients mask. | |||
""" | |||
shape = image.shape | |||
h, w = shape[:2] | |||
rgb = False | |||
if len(shape) == 3: | |||
rgb = True | |||
if start_pos is None: | |||
start_pos = 0.5 | |||
else: | |||
if mode == 'horizontal': | |||
if start_pos[0] > h: | |||
start_pos = 1 | |||
else: | |||
start_pos = start_pos[0] / h | |||
else: | |||
if start_pos[1] > w: | |||
start_pos = 1 | |||
else: | |||
start_pos = start_pos[1] / w | |||
start_color = np.array(start_color) | |||
end_color = np.array(end_color) | |||
if mode == 'horizontal': | |||
w_l = int(w * start_pos) | |||
w_r = w - w_l | |||
if w_l > w_r: | |||
r_end_color = (end_color - start_color) / start_pos * (1 - start_pos) + start_color | |||
left = np.linspace(end_color, start_color, w_l) | |||
right = np.linspace(start_color, r_end_color, w_r) | |||
else: | |||
l_end_color = (end_color - start_color) / (1 - start_pos) * start_pos + start_color | |||
left = np.linspace(l_end_color, start_color, w_l) | |||
right = np.linspace(start_color, end_color, w_r) | |||
line = np.concatenate((left, right), axis=0) | |||
mask = np.reshape(np.tile(line, (h, 1)), (h, w, 3)) | |||
else: | |||
# 'vertical' | |||
h_t = int(h * start_pos) | |||
h_b = h - h_t | |||
if h_t > h_b: | |||
b_end_color = (end_color - start_color) / start_pos * (1 - start_pos) + start_color | |||
top = np.linspace(end_color, start_color, h_t) | |||
bottom = np.linspace(start_color, b_end_color, h_b) | |||
else: | |||
t_end_color = (end_color - start_color) / (1 - start_pos) * start_pos + start_color | |||
top = np.linspace(t_end_color, start_color, h_t) | |||
bottom = np.linspace(start_color, end_color, h_b) | |||
line = np.concatenate((top, bottom), axis=0) | |||
mask = np.reshape(np.tile(line, (w, 1)), (w, h, 3)) | |||
mask = np.transpose(mask, [1, 0, 2]) | |||
if not rgb: | |||
mask = mask[:, :, 0] | |||
return mask.astype(np.uint8) | |||
class GradientLuminance(_NaturalPerturb): | |||
""" | |||
Gradient adjusts the luminance of picture. | |||
Args: | |||
color_start (union[tuple, list]): Color of gradient center. Default:(0, 0, 0). | |||
color_end (union[tuple, list]): Color of gradient edge. Default:(255, 255, 255). | |||
start_point (union[tuple, list]): 2D coordinate of gradient center. | |||
scope (float): Range of the gradient. A larger value indicates a larger gradient range. Default: 0.3. | |||
pattern (str): Dark or light, this value must be in ['light', 'dark']. | |||
bright_rate (float): Control brightness of . A larger value indicates a larger gradient range. If parameter | |||
'pattern' is 'light', Suggested value range in [0.1, 0.7], if parameter 'pattern' is 'dark', Suggested value | |||
range in [0.1, 0.9]. | |||
mode (str): Gradient mode, value must be in ['circle', 'horizontal', 'vertical']. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Examples: | |||
>>> img = cv2.imread('x.png') | |||
>>> height, width = img.shape[:2] | |||
>>> point = (height // 4, width // 2) | |||
>>> start = (255, 255, 255) | |||
>>> end = (0, 0, 0) | |||
>>> scope = 0.3 | |||
>>> pattern='light' | |||
>>> bright_rate = 0.3 | |||
>>> trans = GradientLuminance(start, end, point, scope, pattern, bright_rate, mode='circle') | |||
>>> img_new = trans(img) | |||
""" | |||
def __init__(self, color_start=(0, 0, 0), color_end=(255, 255, 255), start_point=(10, 10), scope=0.5, | |||
pattern='light', bright_rate=0.3, mode='circle', auto_param=False): | |||
super(GradientLuminance, self).__init__() | |||
self.color_start = check_param_multi_types('color_start', color_start, [list, tuple]) | |||
self.color_end = check_param_multi_types('color_end', color_end, [list, tuple]) | |||
self.start_point = check_param_multi_types('start_point', start_point, [list, tuple]) | |||
self.scope = check_value_non_negative('scope', scope) | |||
self.bright_rate = check_param_type('bright_rate', bright_rate, float) | |||
self.bright_rate = check_param_in_range('bright_rate', bright_rate, 0, 1) | |||
self.auto_param = check_param_type('auto_param', auto_param, bool) | |||
if pattern in ['light', 'dark']: | |||
self.pattern = pattern | |||
else: | |||
msg = "Value of param pattern must be in ['light', 'dark']" | |||
LOGGER.error(TAG, msg) | |||
raise ValueError(msg) | |||
if mode in ['circle', 'horizontal', 'vertical']: | |||
self.mode = mode | |||
else: | |||
msg = "Value of param mode must be in ['circle', 'horizontal', 'vertical']" | |||
LOGGER.error(TAG, msg) | |||
raise ValueError(msg) | |||
def _set_auto_param(self, w, h): | |||
self.color_start = (np.random.uniform(0, 255),) * 3 | |||
self.color_end = (np.random.uniform(0, 255),) * 3 | |||
self.start_point = (np.random.uniform(0, w), np.random.uniform(0, h)) | |||
self.scope = np.random.uniform(0, 1) | |||
self.bright_rate = np.random.uniform(0.1, 0.9) | |||
self.pattern = np.random.choice(['light', 'dark']) | |||
self.mode = np.random.choice(['circle', 'horizontal', 'vertical']) | |||
def __call__(self, image): | |||
""" | |||
Gradient adjusts the luminance of picture. | |||
Args: | |||
image (numpy.ndarray): Original image. | |||
Returns: | |||
numpy.ndarray, image with perlin noise. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
w, h = image.shape[:2] | |||
if self.auto_param: | |||
self._set_auto_param(w, h) | |||
if self.mode == 'circle': | |||
mask = _circle_gradient_mask(image, self.color_start, self.color_end, self.scope, self.start_point) | |||
else: | |||
mask = _line_gradient_mask(image, self.start_point, self.color_start, self.color_end, mode=self.mode) | |||
if self.pattern == 'light': | |||
img_new = cv2.addWeighted(image, 1, mask, self.bright_rate, 0.0) | |||
else: | |||
img_new = cv2.addWeighted(image, self.bright_rate, mask, 1 - self.bright_rate, 0.0) | |||
img_new = self._original_format(img_new, chw, normalized, gray3dim) | |||
return img_new.astype(ori_dtype) |
@@ -0,0 +1,159 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Base class for image natural perturbation. | |||
""" | |||
import numpy as np | |||
from mindspore.dataset.vision.py_transforms_util import is_numpy, hwc_to_chw | |||
from mindarmour.utils.logger import LogUtil | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image Transformation' | |||
def _chw_to_hwc(img): | |||
""" | |||
Transpose the input image; shape (C, H, W) to shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be converted. | |||
Returns: | |||
img (numpy.ndarray), Converted image. | |||
""" | |||
if is_numpy(img): | |||
return img.transpose(1, 2, 0).copy() | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def _is_hwc(img): | |||
""" | |||
Check if the input image is shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is shape (H, W, C). | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if img_shape[2] == 3 and img_shape[1] > 3 and img_shape[0] > 3: | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def _is_chw(img): | |||
""" | |||
Check if the input image is shape (H, W, C). | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is shape (H, W, C). | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if img_shape[0] == 3 and img_shape[1] > 3 and img_shape[2] > 3: | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def _is_rgb(img): | |||
""" | |||
Check if the input image is RGB. | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is RGB. | |||
""" | |||
if is_numpy(img): | |||
img_shape = np.shape(img) | |||
if len(np.shape(img)) == 3 and (img_shape[0] == 3 or img_shape[2] == 3): | |||
return True | |||
return False | |||
raise TypeError('img should be numpy.ndarray. Got {}'.format(type(img))) | |||
def _is_normalized(img): | |||
""" | |||
Check if the input image is normalized between 0 to 1. | |||
Args: | |||
img (numpy.ndarray): Image to be checked. | |||
Returns: | |||
Bool, True if input is normalized between 0 to 1. | |||
""" | |||
if is_numpy(img): | |||
minimal = np.min(img) | |||
maximum = np.max(img) | |||
if minimal >= 0 and maximum <= 1: | |||
return True | |||
return False | |||
raise TypeError('img should be Numpy array. Got {}'.format(type(img))) | |||
class _NaturalPerturb: | |||
""" | |||
The abstract base class for all image natural perturbation classes. | |||
""" | |||
def __init__(self): | |||
pass | |||
def _check(self, image): | |||
""" Check image format. If input image is RGB and its shape | |||
is (C, H, W), it will be transposed to (H, W, C). If the value | |||
of the image is not normalized , it will be rescaled between 0 to 255.""" | |||
rgb = _is_rgb(image) | |||
chw = False | |||
gray3dim = False | |||
normalized = _is_normalized(image) | |||
if rgb: | |||
chw = _is_chw(image) | |||
if chw: | |||
image = _chw_to_hwc(image) | |||
else: | |||
image = image | |||
else: | |||
if len(np.shape(image)) == 3: | |||
gray3dim = True | |||
image = image[0] | |||
else: | |||
image = image | |||
if normalized: | |||
image = image * 255 | |||
return rgb, chw, normalized, gray3dim, np.uint8(image) | |||
def _original_format(self, image, chw, normalized, gray3dim): | |||
""" Return image with original format. """ | |||
if not is_numpy(image): | |||
image = np.array(image) | |||
if chw: | |||
image = hwc_to_chw(image) | |||
if normalized: | |||
image = image / 255 | |||
if gray3dim: | |||
image = np.expand_dims(image, 0) | |||
return image | |||
def __call__(self, image): | |||
pass |
@@ -0,0 +1,365 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Image transformation. | |||
""" | |||
import math | |||
import numpy as np | |||
import cv2 | |||
from mindarmour.natural_robustness.natural_perturb import _NaturalPerturb | |||
from mindarmour.utils._check_param import check_param_multi_types, check_param_type, check_value_non_negative | |||
from mindarmour.utils.logger import LogUtil | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image Transformation' | |||
class Translate(_NaturalPerturb): | |||
""" | |||
Translate an image. | |||
Args: | |||
x_bias (Union[int, float]): X-direction translation, x = x + x_bias*image_length. Suggested value range | |||
in [-0.1, 0.1]. | |||
y_bias (Union[int, float]): Y-direction translation, y = y + y_bias*image_wide. Suggested value range | |||
in [-0.1, 0.1]. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> x_bias = 0.1 | |||
>>> y_bias = 0.1 | |||
>>> trans = Translate(x_bias, y_bias) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, x_bias=0, y_bias=0, auto_param=False): | |||
super(Translate, self).__init__() | |||
self.x_bias = check_param_multi_types('x_bias', x_bias, [int, float]) | |||
self.y_bias = check_param_multi_types('y_bias', y_bias, [int, float]) | |||
if auto_param: | |||
self.x_bias = np.random.uniform(-0.1, 0.1) | |||
self.y_bias = np.random.uniform(-0.1, 0.1) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
h, w = image.shape[:2] | |||
matrix = np.array([[1, 0, self.x_bias * w], [0, 1, self.y_bias * h]], dtype=np.float) | |||
new_img = cv2.warpAffine(image, matrix, (w, h)) | |||
new_img = self._original_format(new_img, chw, normalized, gray3dim) | |||
return new_img.astype(ori_dtype) | |||
class Scale(_NaturalPerturb): | |||
""" | |||
Scale an image in the middle. | |||
Args: | |||
factor_x (Union[float, int]): Rescale in X-direction, x=factor_x*x. Suggested value range in [0.5, 1] and | |||
abs(factor_y - factor_x) < 0.5. | |||
factor_y (Union[float, int]): Rescale in Y-direction, y=factor_y*y. Suggested value range in [0.5, 1] and | |||
abs(factor_y - factor_x) < 0.5. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> factor_x = 0.7 | |||
>>> factor_y = 0.6 | |||
>>> trans = Scale(factor_x, factor_y) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, factor_x=1, factor_y=1, auto_param=False): | |||
super(Scale, self).__init__() | |||
self.factor_x = check_param_multi_types('factor_x', factor_x, [int, float]) | |||
self.factor_y = check_param_multi_types('factor_y', factor_y, [int, float]) | |||
auto_param = check_param_type('auto_param', auto_param, bool) | |||
if auto_param: | |||
self.factor_x = np.random.uniform(0.5, 1) | |||
self.factor_y = np.random.uniform(0.5, 1) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
h, w = image.shape[:2] | |||
matrix = np.array([[self.factor_x, 0, 0], [0, self.factor_y, 0]], dtype=np.float) | |||
new_img = cv2.warpAffine(image, matrix, (w, h)) | |||
new_img = self._original_format(new_img, chw, normalized, gray3dim) | |||
return new_img.astype(ori_dtype) | |||
class Shear(_NaturalPerturb): | |||
""" | |||
Shear an image, for each pixel (x, y) in the sheared image, the new value is taken from a position | |||
(x+factor_x*y, factor_y*x+y) in the origin image. Then the sheared image will be rescaled to fit original size. | |||
Args: | |||
factor (Union[float, int]): Shear rate in shear direction. Suggested value range in [0.05, 0.5]. | |||
direction (str): Direction of deformation. Optional value is 'vertical' or 'horizontal'. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> factor = 0.2 | |||
>>> trans = Shear(factor, direction='horizontal') | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, factor=0.2, direction='horizontal', auto_param=False): | |||
super(Shear, self).__init__() | |||
self.factor = check_param_multi_types('factor', factor, [int, float]) | |||
if direction not in ['horizontal', 'vertical']: | |||
msg = "'direction must be in ['horizontal', 'vertical'], but got {}".format(direction) | |||
raise ValueError(msg) | |||
self.direction = direction | |||
auto_param = check_param_type('auto_params', auto_param, bool) | |||
if auto_param: | |||
self.factor = np.random.uniform(0.05, 0.5) | |||
self.direction = np.random.choice(['horizontal', 'vertical']) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
h, w = image.shape[:2] | |||
if self.direction == 'horizontal': | |||
matrix = np.array([[1, self.factor, 0], [0, 1, 0]], dtype=np.float) | |||
nw = int(w + self.factor * h) | |||
nh = h | |||
else: | |||
matrix = np.array([[1, 0, 0], [self.factor, 1, 0]], dtype=np.float) | |||
nw = w | |||
nh = int(h + self.factor * w) | |||
new_img = cv2.warpAffine(image, matrix, (nw, nh)) | |||
new_img = cv2.resize(new_img, (w, h)) | |||
new_img = self._original_format(new_img, chw, normalized, gray3dim) | |||
return new_img.astype(ori_dtype) | |||
class Rotate(_NaturalPerturb): | |||
""" | |||
Rotate an image of counter clockwise around its center. | |||
Args: | |||
angle (Union[float, int]): Degrees of counter clockwise. Suggested value range in [-60, 60]. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> angle = 20 | |||
>>> trans = Rotate(angle) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, angle=20, auto_param=False): | |||
super(Rotate, self).__init__() | |||
self.angle = check_param_multi_types('angle', angle, [int, float]) | |||
auto_param = check_param_type('auto_param', auto_param, bool) | |||
if auto_param: | |||
self.angle = np.random.uniform(0, 360) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, rotated image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
h, w = image.shape[:2] | |||
center = (w // 2, h // 2) | |||
matrix = cv2.getRotationMatrix2D(center, -self.angle, 1.0) | |||
cos = np.abs(matrix[0, 0]) | |||
sin = np.abs(matrix[0, 1]) | |||
# Calculate new edge after rotated | |||
nw = int((h * sin) + (w * cos)) | |||
nh = int((h * cos) + (w * sin)) | |||
# Adjust move distance of rotate matrix. | |||
matrix[0, 2] += (nw / 2) - center[0] | |||
matrix[1, 2] += (nh / 2) - center[1] | |||
rotate = cv2.warpAffine(image, matrix, (nw, nh)) | |||
rotate = cv2.resize(rotate, (w, h)) | |||
new_img = self._original_format(rotate, chw, normalized, gray3dim) | |||
return new_img.astype(ori_dtype) | |||
class Perspective(_NaturalPerturb): | |||
""" | |||
Perform perspective transformation on a given picture. | |||
Args: | |||
ori_pos (list): Four points in original image. | |||
dst_pos (list): The point coordinates of the 4 points in ori_pos after perspective transformation. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Example: | |||
>>> img = cv2.imread('1.png') | |||
>>> img = np.array(img) | |||
>>> ori_pos = [[0, 0], [0, 800], [800, 0], [800, 800]] | |||
>>> dst_pos = [[50, 0], [0, 800], [780, 0], [800, 800]] | |||
>>> trans = Perspective(ori_pos, dst_pos) | |||
>>> dst = trans(img) | |||
""" | |||
def __init__(self, ori_pos, dst_pos, auto_param=False): | |||
super(Perspective, self).__init__() | |||
ori_pos = check_param_type('ori_pos', ori_pos, list) | |||
dst_pos = check_param_type('dst_pos', dst_pos, list) | |||
self.ori_pos = np.float32(ori_pos) | |||
self.dst_pos = np.float32(dst_pos) | |||
self.auto_param = check_param_type('auto_param', auto_param, bool) | |||
def _set_auto_param(self, w, h): | |||
self.ori_pos = [[h * 0.25, w * 0.25], [h * 0.25, w * 0.75], [h * 0.75, w * 0.25], [h * 0.75, w * 0.75]] | |||
self.dst_pos = [[np.random.uniform(0, h * 0.5), np.random.uniform(0, w * 0.5)], | |||
[np.random.uniform(0, h * 0.5), np.random.uniform(w * 0.5, w)], | |||
[np.random.uniform(h * 0.5, h), np.random.uniform(0, w * 0.5)], | |||
[np.random.uniform(h * 0.5, h), np.random.uniform(w * 0.5, w)]] | |||
self.ori_pos = np.float32(self.ori_pos) | |||
self.dst_pos = np.float32(self.dst_pos) | |||
def __call__(self, image): | |||
""" | |||
Transform the image. | |||
Args: | |||
image (numpy.ndarray): Original image to be transformed. | |||
Returns: | |||
numpy.ndarray, transformed image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
h, w = image.shape[:2] | |||
if self.auto_param: | |||
self._set_auto_param(w, h) | |||
matrix = cv2.getPerspectiveTransform(self.ori_pos, self.dst_pos) | |||
new_img = cv2.warpPerspective(image, matrix, (w, h)) | |||
new_img = self._original_format(new_img, chw, normalized, gray3dim) | |||
return new_img.astype(ori_dtype) | |||
class Curve(_NaturalPerturb): | |||
""" | |||
Curve picture using sin method. | |||
Args: | |||
curves (union[float, int]): Divide width to curves of `2*math.pi`, which means how many curve cycles. Suggested | |||
value range in [0.1. 5]. | |||
depth (union[float, int]): Amplitude of sin method. Suggested value not exceed 1/10 of the length of the | |||
picture. | |||
mode (str): Direction of deformation. Optional value is 'vertical' or 'horizontal'. | |||
auto_param (bool): Auto selected parameters. Selected parameters will preserve semantics of image. | |||
Examples: | |||
>>> img = cv2.imread('x.png') | |||
>>> curves =1 | |||
>>> depth = 10 | |||
>>> trans = Curve(curves, depth, mode='vertical') | |||
>>> img_new = trans(img) | |||
""" | |||
def __init__(self, curves=3, depth=10, mode='vertical', auto_param=False): | |||
super(Curve).__init__() | |||
self.curves = check_value_non_negative('curves', curves) | |||
self.depth = check_value_non_negative('depth', depth) | |||
if mode in ['vertical', 'horizontal']: | |||
self.mode = mode | |||
else: | |||
msg = "Value of param mode must be in ['vertical', 'horizontal']" | |||
LOGGER.error(TAG, msg) | |||
raise ValueError(msg) | |||
self.auto_param = check_param_type('auto_param', auto_param, bool) | |||
def _set_auto_params(self, height, width): | |||
if self.auto_param: | |||
self.curves = np.random.uniform(1, 5) | |||
self.mode = np.random.choice(['vertical', 'horizontal']) | |||
if self.mode == 'vertical': | |||
self.depth = np.random.uniform(1, 0.1 * width) | |||
else: | |||
self.depth = np.random.uniform(1, 0.1 * height) | |||
def __call__(self, image): | |||
""" | |||
Curve picture using sin method. | |||
Args: | |||
image (numpy.ndarray): Original image. | |||
Returns: | |||
numpy.ndarray, curved image. | |||
""" | |||
ori_dtype = image.dtype | |||
_, chw, normalized, gray3dim, image = self._check(image) | |||
shape = image.shape | |||
height, width = shape[:2] | |||
if self.mode == 'vertical': | |||
if len(shape) == 3: | |||
image = np.transpose(image, [1, 0, 2]) | |||
else: | |||
image = np.transpose(image, [1, 0]) | |||
src_x = np.zeros((height, width), np.float32) | |||
src_y = np.zeros((height, width), np.float32) | |||
for y in range(height): | |||
for x in range(width): | |||
src_x[y, x] = x | |||
src_y[y, x] = y + self.depth * math.sin(x / (width / self.curves / 2 / math.pi)) | |||
img_new = cv2.remap(image, src_x, src_y, cv2.INTER_LINEAR) | |||
if self.mode == 'vertical': | |||
if len(shape) == 3: | |||
img_new = np.transpose(img_new, [1, 0, 2]) | |||
else: | |||
img_new = np.transpose(image, [1, 0]) | |||
new_img = self._original_format(img_new, chw, normalized, gray3dim) | |||
return new_img.astype(ori_dtype) |
@@ -1,4 +1,5 @@ | |||
# Copyright 2021 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
@@ -183,7 +183,7 @@ def check_pair_numpy_param(inputs_name, inputs, labels_name, labels): | |||
def check_equal_length(para_name1, value1, para_name2, value2): | |||
"""Check weather the two parameters have equal length.""" | |||
if len(value1) != len(value2): | |||
msg = 'The dimension of {0} must equal to the {1}, but got {0} is {2}, {1} is {3}'\ | |||
msg = 'The dimension of {0} must equal to the {1}, but got {0} is {2}, {1} is {3}' \ | |||
.format(para_name1, para_name2, len(value1), len(value2)) | |||
LOGGER.error(TAG, msg) | |||
raise ValueError(msg) | |||
@@ -193,7 +193,7 @@ def check_equal_length(para_name1, value1, para_name2, value2): | |||
def check_equal_shape(para_name1, value1, para_name2, value2): | |||
"""Check weather the two parameters have equal shape.""" | |||
if value1.shape != value2.shape: | |||
msg = 'The shape of {0} must equal to the {1}, but got {0} is {2}, {1} is {3}'.\ | |||
msg = 'The shape of {0} must equal to the {1}, but got {0} is {2}, {1} is {3}'. \ | |||
format(para_name1, para_name2, value1.shape, value2.shape) | |||
LOGGER.error(TAG, msg) | |||
raise ValueError(msg) | |||
@@ -204,7 +204,7 @@ def check_norm_level(norm_level): | |||
"""Check norm_level of regularization.""" | |||
if not isinstance(norm_level, (int, str)): | |||
msg = 'Type of norm_level must be in [int, str], but got {}'.format(type(norm_level)) | |||
accept_norm = [1, 2, '1', '2', 'l1', 'l2', 'inf', 'linf', np.inf] | |||
accept_norm = [1, 2, '1', '2', 'l1', 'l2', 'inf', 'linf', 'np.inf', np.inf] | |||
if norm_level not in accept_norm: | |||
msg = 'norm_level must be in {}, but got {}'.format(accept_norm, norm_level) | |||
LOGGER.error(TAG, msg) | |||
@@ -224,8 +224,7 @@ def normalize_value(value, norm_level): | |||
numpy.ndarray, normalized value. | |||
Raises: | |||
NotImplementedError: If norm_level is not in [1, 2 , np.inf, '1', '2', | |||
'inf', 'l1', 'l2'] | |||
NotImplementedError: If norm_level is not in [1, 2 , np.inf, '1', '2', 'inf', 'l1', 'l2'] | |||
""" | |||
norm_level = check_norm_level(norm_level) | |||
ori_shape = value.shape | |||
@@ -237,7 +236,7 @@ def normalize_value(value, norm_level): | |||
elif norm_level in (2, '2', 'l2'): | |||
norm = np.linalg.norm(value_reshape, ord=2, axis=1, keepdims=True) + avoid_zero_div | |||
norm_value = value_reshape / norm | |||
elif norm_level in (np.inf, 'inf'): | |||
elif norm_level in (np.inf, 'inf', 'np.inf', 'linf'): | |||
norm = np.max(abs(value_reshape), axis=1, keepdims=True) + avoid_zero_div | |||
norm_value = value_reshape / norm | |||
else: | |||
@@ -75,11 +75,11 @@ def test_lenet_mnist_coverage_cpu(): | |||
model = Model(net) | |||
# initialize fuzz test with training dataset | |||
training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
training_data = (np.random.random((10000, 10)) * 20).astype(np.float32) | |||
# fuzz test with original test data | |||
# get test data | |||
test_data = (np.random.random((2000, 10))*20).astype(np.float32) | |||
test_data = (np.random.random((2000, 10)) * 20).astype(np.float32) | |||
test_labels = np.random.randint(0, 10, 2000).astype(np.int32) | |||
nc = NeuronCoverage(model, threshold=0.1) | |||
@@ -118,6 +118,7 @@ def test_lenet_mnist_coverage_cpu(): | |||
print('NC of adv data is: ', nc_metric) | |||
print('TKNC of adv data is: ', tknc_metrics) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@@ -130,11 +131,11 @@ def test_lenet_mnist_coverage_ascend(): | |||
model = Model(net) | |||
# initialize fuzz test with training dataset | |||
training_data = (np.random.random((10000, 10))*20).astype(np.float32) | |||
training_data = (np.random.random((10000, 10)) * 20).astype(np.float32) | |||
# fuzz test with original test data | |||
# get test data | |||
test_data = (np.random.random((2000, 10))*20).astype(np.float32) | |||
test_data = (np.random.random((2000, 10)) * 20).astype(np.float32) | |||
nc = NeuronCoverage(model, threshold=0.1) | |||
nc_metric = nc.get_metrics(test_data) | |||
@@ -99,15 +99,17 @@ def test_fuzzing_ascend(): | |||
model = Model(net) | |||
batch_size = 8 | |||
num_classe = 10 | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'auto_param': [True]}}, | |||
mutate_config = [{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], | |||
'auto_param': [True, False]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'factor': [2, 1]}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': [0.1, 0.3], 'y_bias': [0.2]}}, | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.1, 0.2, 0.3], 'alpha': [0.1]}} | |||
] | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||
# fuzz test with original test data | |||
@@ -142,15 +144,17 @@ def test_fuzzing_cpu(): | |||
model = Model(net) | |||
batch_size = 8 | |||
num_classe = 10 | |||
mutate_config = [{'method': 'Blur', | |||
'params': {'auto_param': [True]}}, | |||
mutate_config = [{'method': 'GaussianBlur', | |||
'params': {'ksize': [1, 2, 3, 5], | |||
'auto_param': [True, False]}}, | |||
{'method': 'UniformNoise', | |||
'params': {'factor': [0.1, 0.2, 0.3], 'auto_param': [False, True]}}, | |||
{'method': 'Contrast', | |||
'params': {'factor': [2, 1]}}, | |||
{'method': 'Translate', | |||
'params': {'x_bias': [0.1, 0.3], 'y_bias': [0.2]}}, | |||
'params': {'alpha': [0.5, 1, 1.5], 'beta': [-10, 0, 10], 'auto_param': [False, True]}}, | |||
{'method': 'Rotate', | |||
'params': {'angle': [20, 90], 'auto_param': [False, True]}}, | |||
{'method': 'FGSM', | |||
'params': {'eps': [0.1, 0.2, 0.3], 'alpha': [0.1]}} | |||
] | |||
'params': {'eps': [0.3, 0.2, 0.4], 'alpha': [0.1], 'bounds': [(0, 1)]}}] | |||
# initialize fuzz test with training dataset | |||
train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) | |||
@@ -1,126 +0,0 @@ | |||
# Copyright 2019 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
""" | |||
Image transform test. | |||
""" | |||
import numpy as np | |||
import pytest | |||
from mindarmour.utils.logger import LogUtil | |||
from mindarmour.fuzz_testing.image_transform import Contrast, Brightness, \ | |||
Blur, Noise, Translate, Scale, Shear, Rotate | |||
LOGGER = LogUtil.get_instance() | |||
TAG = 'Image transform test' | |||
LOGGER.set_level('INFO') | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_contrast(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Contrast() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_brightness(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Brightness() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_blur(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Blur() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_noise(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Noise() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_translate(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Translate() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_shear(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Shear() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_scale(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Scale() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.env_onecard | |||
@pytest.mark.component_mindarmour | |||
def test_rotate(): | |||
image = (np.random.rand(32, 32)).astype(np.float32) | |||
trans = Rotate() | |||
trans.set_params(auto_param=True) | |||
_ = trans.transform(image) |
@@ -0,0 +1,577 @@ | |||
# Copyright 2022 Huawei Technologies Co., Ltd | |||
# | |||
# Licensed under the Apache License, Version 2.0 (the "License"); | |||
# you may not use this file except in compliance with the License. | |||
# You may obtain a copy of the License at | |||
# | |||
# http://www.apache.org/licenses/LICENSE-2.0 | |||
# | |||
# Unless required by applicable law or agreed to in writing, software | |||
# distributed under the License is distributed on an "AS IS" BASIS, | |||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# See the License for the specific language governing permissions and | |||
# limitations under the License. | |||
"""Example for natural robustness methods.""" | |||
import pytest | |||
import numpy as np | |||
from mindspore import context | |||
from mindarmour.natural_robustness import Translate, Curve, Perspective, Scale, Shear, Rotate, SaltAndPepperNoise, \ | |||
NaturalNoise, GaussianNoise, UniformNoise, MotionBlur, GaussianBlur, GradientBlur, Contrast, GradientLuminance | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_perspective(): | |||
""" | |||
Feature: Test image perspective. | |||
Description: Image will be transform for given perspective projection. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
ori_pos = [[0, 0], [0, 800], [800, 0], [800, 800]] | |||
dst_pos = [[50, 0], [0, 800], [780, 0], [800, 800]] | |||
trans = Perspective(ori_pos, dst_pos) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_uniform_noise(): | |||
""" | |||
Feature: Test image uniform noise. | |||
Description: Add uniform image in image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = UniformNoise(factor=0.1) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_gaussian_noise(): | |||
""" | |||
Feature: Test image gaussian noise. | |||
Description: Add gaussian image in image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = GaussianNoise(factor=0.1) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_contrast(): | |||
""" | |||
Feature: Test image contrast. | |||
Description: Adjust image contrast. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Contrast(alpha=0.3, beta=0) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_gaussian_blur(): | |||
""" | |||
Feature: Test image gaussian blur. | |||
Description: Add gaussian blur to image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = GaussianBlur(ksize=5) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_salt_and_pepper_noise(): | |||
""" | |||
Feature: Test image salt and pepper noise. | |||
Description: Add salt and pepper to image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = SaltAndPepperNoise(factor=0.01) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_translate(): | |||
""" | |||
Feature: Test image translate. | |||
Description: Translate an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Translate(x_bias=0.1, y_bias=0.1) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_scale(): | |||
""" | |||
Feature: Test image scale. | |||
Description: Scale an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Scale(factor_x=0.7, factor_y=0.7) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_shear(): | |||
""" | |||
Feature: Test image shear. | |||
Description: Shear an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Shear(factor=0.2) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_rotate(): | |||
""" | |||
Feature: Test image rotate. | |||
Description: Rotate an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Rotate(angle=20) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_curve(): | |||
""" | |||
Feature: Test image curve. | |||
Description: Transform an image with curve. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Curve(curves=1.5, depth=1.5, mode='horizontal') | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_natural_noise(): | |||
""" | |||
Feature: Test natural noise. | |||
Description: Add natural noise to an. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
trans = NaturalNoise(ratio=0.0001, k_x_range=(1, 30), k_y_range=(1, 10), auto_param=True) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_gradient_luminance(): | |||
""" | |||
Feature: Test gradient luminance. | |||
Description: Adjust image luminance. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
height, width = image.shape[:2] | |||
point = (height // 4, width // 2) | |||
start = (255, 255, 255) | |||
end = (0, 0, 0) | |||
scope = 0.3 | |||
bright_rate = 0.4 | |||
trans = GradientLuminance(start, end, start_point=point, scope=scope, pattern='dark', bright_rate=bright_rate, | |||
mode='horizontal') | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_motion_blur(): | |||
""" | |||
Feature: Test motion blur. | |||
Description: Add motion blur to an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
angle = -10.5 | |||
i = 3 | |||
trans = MotionBlur(degree=i, angle=angle) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_x86_cpu | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_gradient_blur(): | |||
""" | |||
Feature: Test gradient blur. | |||
Description: Add gradient blur to an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
image = np.random.random((32, 32, 3)) | |||
number = 10 | |||
h, w = image.shape[:2] | |||
point = (int(h / 5), int(w / 5)) | |||
center = False | |||
trans = GradientBlur(point, number, center) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_perspective_ascend(): | |||
""" | |||
Feature: Test image perspective. | |||
Description: Image will be transform for given perspective projection. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
ori_pos = [[0, 0], [0, 800], [800, 0], [800, 800]] | |||
dst_pos = [[50, 0], [0, 800], [780, 0], [800, 800]] | |||
trans = Perspective(ori_pos, dst_pos) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_uniform_noise_ascend(): | |||
""" | |||
Feature: Test image uniform noise. | |||
Description: Add uniform image in image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = UniformNoise(factor=0.1) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_gaussian_noise_ascend(): | |||
""" | |||
Feature: Test image gaussian noise. | |||
Description: Add gaussian image in image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = GaussianNoise(factor=0.1) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_contrast_ascend(): | |||
""" | |||
Feature: Test image contrast. | |||
Description: Adjust image contrast. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Contrast(alpha=0.3, beta=0) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_gaussian_blur_ascend(): | |||
""" | |||
Feature: Test image gaussian blur. | |||
Description: Add gaussian blur to image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = GaussianBlur(ksize=5) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_salt_and_pepper_noise_ascend(): | |||
""" | |||
Feature: Test image salt and pepper noise. | |||
Description: Add salt and pepper to image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = SaltAndPepperNoise(factor=0.01) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_translate_ascend(): | |||
""" | |||
Feature: Test image translate. | |||
Description: Translate an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Translate(x_bias=0.1, y_bias=0.1) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_ascend_mindarmour | |||
def test_scale_ascend(): | |||
""" | |||
Feature: Test image scale. | |||
Description: Scale an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Scale(factor_x=0.7, factor_y=0.7) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_shear_ascend(): | |||
""" | |||
Feature: Test image shear. | |||
Description: Shear an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Shear(factor=0.2) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_rotate_ascend(): | |||
""" | |||
Feature: Test image rotate. | |||
Description: Rotate an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Rotate(angle=20) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_curve_ascend(): | |||
""" | |||
Feature: Test image curve. | |||
Description: Transform an image with curve. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = Curve(curves=1.5, depth=1.5, mode='horizontal') | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_natural_noise_ascend(): | |||
""" | |||
Feature: Test natural noise. | |||
Description: Add natural noise to an. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
trans = NaturalNoise(ratio=0.0001, k_x_range=(1, 30), k_y_range=(1, 10), auto_param=True) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_gradient_luminance_ascend(): | |||
""" | |||
Feature: Test gradient luminance. | |||
Description: Adjust image luminance. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
height, width = image.shape[:2] | |||
point = (height // 4, width // 2) | |||
start = (255, 255, 255) | |||
end = (0, 0, 0) | |||
scope = 0.3 | |||
bright_rate = 0.4 | |||
trans = GradientLuminance(start, end, start_point=point, scope=scope, pattern='dark', bright_rate=bright_rate, | |||
mode='horizontal') | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_motion_blur_ascend(): | |||
""" | |||
Feature: Test motion blur. | |||
Description: Add motion blur to an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
angle = -10.5 | |||
i = 3 | |||
trans = MotionBlur(degree=i, angle=angle) | |||
dst = trans(image) | |||
print(dst) | |||
@pytest.mark.level0 | |||
@pytest.mark.platform_arm_ascend_training | |||
@pytest.mark.platform_x86_ascend_training | |||
@pytest.mark.env_card | |||
@pytest.mark.component_mindarmour | |||
def test_gradient_blur_ascend(): | |||
""" | |||
Feature: Test gradient blur. | |||
Description: Add gradient blur to an image. | |||
Expectation: success. | |||
""" | |||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
image = np.random.random((32, 32, 3)) | |||
number = 10 | |||
h, w = image.shape[:2] | |||
point = (int(h / 5), int(w / 5)) | |||
center = False | |||
trans = GradientBlur(point, number, center) | |||
dst = trans(image) | |||
print(dst) |