@@ -17,7 +17,7 @@ Image transform | |||||
import numpy as np | import numpy as np | ||||
from PIL import Image, ImageEnhance, ImageFilter | from PIL import Image, ImageEnhance, ImageFilter | ||||
from mindspore.dataset.transforms.vision.py_transforms_util import is_numpy, \ | |||||
from mindspore.dataset.vision.py_transforms_util import is_numpy, \ | |||||
to_pil, hwc_to_chw | to_pil, hwc_to_chw | ||||
from mindarmour.utils._check_param import check_param_multi_types | from mindarmour.utils._check_param import check_param_multi_types | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
@@ -144,7 +144,6 @@ class NoiseMechanismsFactory: | |||||
>>> metrics=None) | >>> metrics=None) | ||||
>>> ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | >>> ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
>>> ['data', 'label']) | >>> ['data', 'label']) | ||||
>>> ms_ds.set_dataset_size(batch_size * batches) | |||||
>>> model.train(epochs, ms_ds, dataset_sink_mode=False) | >>> model.train(epochs, ms_ds, dataset_sink_mode=False) | ||||
""" | """ | ||||
if mech_name == 'Gaussian': | if mech_name == 'Gaussian': | ||||
@@ -114,7 +114,6 @@ class DPModel(Model): | |||||
>>> metrics=None) | >>> metrics=None) | ||||
>>> ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | >>> ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
>>> ['data', 'label']) | >>> ['data', 'label']) | ||||
>>> ms_ds.set_dataset_size(batch_size*batches) | |||||
>>> model.train(epochs, ms_ds, dataset_sink_mode=False) | >>> model.train(epochs, ms_ds, dataset_sink_mode=False) | ||||
""" | """ | ||||
@@ -75,7 +75,6 @@ def test_dp_model_with_pynative_mode(): | |||||
metrics=None) | metrics=None) | ||||
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
['data', 'label']) | ['data', 'label']) | ||||
ms_ds.set_dataset_size(batch_size*batches) | |||||
model.train(epochs, ms_ds, dataset_sink_mode=False) | model.train(epochs, ms_ds, dataset_sink_mode=False) | ||||
@@ -113,7 +112,6 @@ def test_dp_model_with_graph_mode(): | |||||
metrics=None) | metrics=None) | ||||
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
['data', 'label']) | ['data', 'label']) | ||||
ms_ds.set_dataset_size(batch_size*batches) | |||||
model.train(epochs, ms_ds, dataset_sink_mode=False) | model.train(epochs, ms_ds, dataset_sink_mode=False) | ||||
@@ -150,5 +148,4 @@ def test_dp_model_with_graph_mode_ada_gaussian(): | |||||
metrics=None) | metrics=None) | ||||
ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ms_ds = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
['data', 'label']) | ['data', 'label']) | ||||
ms_ds.set_dataset_size(batch_size*batches) | |||||
model.train(epochs, ms_ds, dataset_sink_mode=False) | model.train(epochs, ms_ds, dataset_sink_mode=False) |
@@ -66,7 +66,6 @@ def test_dp_monitor(): | |||||
LOGGER.info(TAG, "============== Starting Training ==============") | LOGGER.info(TAG, "============== Starting Training ==============") | ||||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
["data", "label"]) | ["data", "label"]) | ||||
ds1.set_dataset_size(batch_size * batches) | |||||
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | ||||
@@ -95,7 +94,6 @@ def test_dp_monitor_gpu(): | |||||
LOGGER.info(TAG, "============== Starting Training ==============") | LOGGER.info(TAG, "============== Starting Training ==============") | ||||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
["data", "label"]) | ["data", "label"]) | ||||
ds1.set_dataset_size(batch_size * batches) | |||||
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | ||||
@@ -124,7 +122,6 @@ def test_dp_monitor_cpu(): | |||||
LOGGER.info(TAG, "============== Starting Training ==============") | LOGGER.info(TAG, "============== Starting Training ==============") | ||||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
["data", "label"]) | ["data", "label"]) | ||||
ds1.set_dataset_size(batch_size * batches) | |||||
model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | model.train(epochs, ds1, callbacks=[rdp], dataset_sink_mode=False) | ||||
@@ -154,7 +151,6 @@ def test_dp_monitor_zcdp(): | |||||
LOGGER.info(TAG, "============== Starting Training ==============") | LOGGER.info(TAG, "============== Starting Training ==============") | ||||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
["data", "label"]) | ["data", "label"]) | ||||
ds1.set_dataset_size(batch_size * batches) | |||||
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) | model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) | ||||
@@ -183,7 +179,6 @@ def test_dp_monitor_zcdp_gpu(): | |||||
LOGGER.info(TAG, "============== Starting Training ==============") | LOGGER.info(TAG, "============== Starting Training ==============") | ||||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
["data", "label"]) | ["data", "label"]) | ||||
ds1.set_dataset_size(batch_size * batches) | |||||
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) | model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) | ||||
@@ -212,5 +207,4 @@ def test_dp_monitor_zcdp_cpu(): | |||||
LOGGER.info(TAG, "============== Starting Training ==============") | LOGGER.info(TAG, "============== Starting Training ==============") | ||||
ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ds1 = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
["data", "label"]) | ["data", "label"]) | ||||
ds1.set_dataset_size(batch_size * batches) | |||||
model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) | model.train(epochs, ds1, callbacks=[zcdp], dataset_sink_mode=False) |
@@ -80,8 +80,6 @@ def test_membership_inference_object_train(): | |||||
["image", "label"]) | ["image", "label"]) | ||||
ds_test = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ds_test = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
["image", "label"]) | ["image", "label"]) | ||||
ds_train.set_dataset_size(batch_size*batches) | |||||
ds_test.set_dataset_size((batch_size*batches)) | |||||
inference_model.train(ds_train, ds_test, config) | inference_model.train(ds_train, ds_test, config) | ||||
@@ -104,8 +102,6 @@ def test_membership_inference_eval(): | |||||
["image", "label"]) | ["image", "label"]) | ||||
eval_test = ds.GeneratorDataset(dataset_generator(batch_size, batches), | eval_test = ds.GeneratorDataset(dataset_generator(batch_size, batches), | ||||
["image", "label"]) | ["image", "label"]) | ||||
eval_train.set_dataset_size(batch_size * batches) | |||||
eval_test.set_dataset_size((batch_size * batches)) | |||||
metrics = ["precision", "accuracy", "recall"] | metrics = ["precision", "accuracy", "recall"] | ||||
inference_model.eval(eval_train, eval_test, metrics) | inference_model.eval(eval_train, eval_test, metrics) |