@@ -27,12 +27,12 @@ from mindarmour.attacks.carlini_wagner import CarliniWagnerL2Attack | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'CW_Test' | TAG = 'CW_Test' | ||||
@@ -45,6 +45,80 @@ def test_carlini_wagner_attack(): | |||||
""" | """ | ||||
CW-Attack test | CW-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
num_classes = 10 | |||||
attack = CarliniWagnerL2Attack(net, num_classes, targeted=False) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
np.concatenate(test_labels), batch_size=32) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
accuracy_adv) | |||||
test_labels = np.eye(10)[np.concatenate(test_labels)] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
test_labels, adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_carlini_wagner_attack_cpu(): | |||||
""" | |||||
CW-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -114,4 +188,4 @@ def test_carlini_wagner_attack(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_carlini_wagner_attack() | |||||
test_carlini_wagner_attack_cpu() |
@@ -27,13 +27,12 @@ from mindarmour.attacks.deep_fool import DeepFool | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'DeepFool_Test' | TAG = 'DeepFool_Test' | ||||
@@ -46,6 +45,81 @@ def test_deepfool_attack(): | |||||
""" | """ | ||||
DeepFool-Attack test | DeepFool-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
classes = 10 | |||||
attack = DeepFool(net, classes, norm_level=2, | |||||
bounds=(0.0, 1.0)) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
np.concatenate(test_labels), batch_size=32) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
accuracy_adv) | |||||
test_labels = np.eye(10)[np.concatenate(test_labels)] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
test_labels, adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_deepfool_attack_cpu(): | |||||
""" | |||||
DeepFool-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -116,4 +190,4 @@ def test_deepfool_attack(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_deepfool_attack() | |||||
test_deepfool_attack_cpu() |
@@ -20,6 +20,7 @@ from mindspore import Model | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
from mindspore.nn import SoftmaxCrossEntropyWithLogits | |||||
from scipy.special import softmax | from scipy.special import softmax | ||||
from lenet5_net import LeNet5 | from lenet5_net import LeNet5 | ||||
@@ -27,13 +28,12 @@ from mindarmour.attacks.gradient_method import FastGradientSignMethod | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'FGSM_Test' | TAG = 'FGSM_Test' | ||||
@@ -46,6 +46,7 @@ def test_fast_gradient_sign_method(): | |||||
""" | """ | ||||
FGSM-Attack test | FGSM-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -113,5 +114,78 @@ def test_fast_gradient_sign_method(): | |||||
(stop_time - start_time)/(batch_num*batch_size)) | (stop_time - start_time)/(batch_num*batch_size)) | ||||
def test_fast_gradient_sign_method_cpu(): | |||||
""" | |||||
FGSM-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
true_labels, batch_size=32) | |||||
stop_time = time.clock() | |||||
np.save('./adv_data', adv_data) | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
np.eye(10)[true_labels], | |||||
adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_fast_gradient_sign_method() | |||||
test_fast_gradient_sign_method_cpu() |
@@ -27,12 +27,12 @@ from mindarmour.attacks.black.genetic_attack import GeneticAttack | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'Genetic_Attack' | TAG = 'Genetic_Attack' | ||||
@@ -58,6 +58,87 @@ def test_genetic_attack_on_mnist(): | |||||
""" | """ | ||||
Genetic-Attack test | Genetic-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) | |||||
# attacking | |||||
attack = GeneticAttack(model=model, pop_size=6, mutation_rate=0.05, | |||||
per_bounds=0.1, step_size=0.25, temp=0.1, | |||||
sparse=True) | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
start_time = time.clock() | |||||
success_list, adv_data, query_list = attack.generate( | |||||
np.concatenate(test_images), targeted_labels) | |||||
stop_time = time.clock() | |||||
LOGGER.info(TAG, 'success_list: %s', success_list) | |||||
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) | |||||
pred_logits_adv = model.predict(adv_data) | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_lables_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %g", | |||||
accuracy_adv) | |||||
test_labels_onehot = np.eye(10)[true_labels] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images), | |||||
test_labels_onehot, adv_data, | |||||
pred_logits_adv, targeted=True, | |||||
target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_genetic_attack_on_mnist_cpu(): | |||||
""" | |||||
Genetic-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -134,4 +215,4 @@ def test_genetic_attack_on_mnist(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_genetic_attack_on_mnist() | |||||
test_genetic_attack_on_mnist_cpu() |
@@ -27,10 +27,8 @@ from mindarmour.utils.logger import LogUtil | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="Ascend") | |||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'HopSkipJumpAttack' | TAG = 'HopSkipJumpAttack' | ||||
@@ -79,6 +77,81 @@ def test_hsja_mnist_attack(): | |||||
""" | """ | ||||
hsja-Attack test | hsja-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
net.set_train(False) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 5 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", | |||||
accuracy) | |||||
test_images = np.concatenate(test_images) | |||||
# attacking | |||||
norm = 'l2' | |||||
search = 'grid_search' | |||||
target = False | |||||
attack = HopSkipJumpAttack(model, constraint=norm, stepsize_search=search) | |||||
if target: | |||||
target_labels = random_target_labels(true_labels) | |||||
target_images = create_target_images(test_images, predict_labels, | |||||
target_labels) | |||||
attack.set_target_images(target_images) | |||||
success_list, adv_data, _ = attack.generate(test_images, target_labels) | |||||
else: | |||||
success_list, adv_data, _ = attack.generate(test_images, None) | |||||
adv_datas = [] | |||||
gts = [] | |||||
for success, adv, gt in zip(success_list, adv_data, true_labels): | |||||
if success: | |||||
adv_datas.append(adv) | |||||
gts.append(gt) | |||||
if gts: | |||||
adv_datas = np.concatenate(np.asarray(adv_datas), axis=0) | |||||
gts = np.asarray(gts) | |||||
pred_logits_adv = model.predict(adv_datas) | |||||
pred_lables_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_lables_adv, gts)) | |||||
mis_rate = (1 - accuracy_adv)*(len(adv_datas) / len(success_list)) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
mis_rate) | |||||
def test_hsja_mnist_attack_cpu(): | |||||
""" | |||||
hsja-Attack test | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -141,9 +214,10 @@ def test_hsja_mnist_attack(): | |||||
pred_logits_adv = model.predict(adv_datas) | pred_logits_adv = model.predict(adv_datas) | ||||
pred_lables_adv = np.argmax(pred_logits_adv, axis=1) | pred_lables_adv = np.argmax(pred_logits_adv, axis=1) | ||||
accuracy_adv = np.mean(np.equal(pred_lables_adv, gts)) | accuracy_adv = np.mean(np.equal(pred_lables_adv, gts)) | ||||
mis_rate = (1 - accuracy_adv)*(len(adv_datas) / len(success_list)) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | ||||
accuracy_adv) | |||||
mis_rate) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_hsja_mnist_attack() | |||||
test_hsja_mnist_attack_cpu() |
@@ -27,13 +27,14 @@ from mindarmour.attacks.jsma import JSMAAttack | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'JSMA_Test' | TAG = 'JSMA_Test' | ||||
@@ -46,6 +47,85 @@ def test_jsma_attack(): | |||||
""" | """ | ||||
JSMA-Attack test | JSMA-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) | |||||
# attacking | |||||
classes = 10 | |||||
attack = JSMAAttack(net, classes) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
targeted_labels, batch_size=32) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_lables_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_lables_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %g", | |||||
accuracy_adv) | |||||
test_labels = np.eye(10)[np.concatenate(test_labels)] | |||||
attack_evaluate = AttackEvaluate( | |||||
np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
test_labels, adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv, targeted=True, target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time) / (batch_num*batch_size)) | |||||
def test_jsma_attack_cpu(): | |||||
""" | |||||
JSMA-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -120,4 +200,4 @@ def test_jsma_attack(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_jsma_attack() | |||||
test_jsma_attack_cpu() |
@@ -20,6 +20,7 @@ from mindspore import Model | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
from mindspore.nn import SoftmaxCrossEntropyWithLogits | |||||
from scipy.special import softmax | from scipy.special import softmax | ||||
from lenet5_net import LeNet5 | from lenet5_net import LeNet5 | ||||
@@ -27,13 +28,12 @@ from mindarmour.attacks.lbfgs import LBFGS | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'LBFGS_Test' | TAG = 'LBFGS_Test' | ||||
@@ -46,6 +46,7 @@ def test_lbfgs_attack(): | |||||
""" | """ | ||||
LBFGS-Attack test | LBFGS-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -127,5 +128,90 @@ def test_lbfgs_attack(): | |||||
(stop_time - start_time)/(batch_num*batch_size)) | (stop_time - start_time)/(batch_num*batch_size)) | ||||
def test_lbfgs_attack_cpu(): | |||||
""" | |||||
LBFGS-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
is_targeted = True | |||||
if is_targeted: | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)).astype(np.int32) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
else: | |||||
targeted_labels = true_labels.astype(np.int32) | |||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
attack = LBFGS(net, is_targeted=is_targeted, loss_fn=loss) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
targeted_labels, | |||||
batch_size=batch_size) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
accuracy_adv) | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
np.eye(10)[true_labels], | |||||
adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv, | |||||
targeted=is_targeted, | |||||
target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_lbfgs_attack() | |||||
test_lbfgs_attack_cpu() |
@@ -20,6 +20,7 @@ from mindspore import Model | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
from mindspore.nn import SoftmaxCrossEntropyWithLogits | |||||
from scipy.special import softmax | from scipy.special import softmax | ||||
from lenet5_net import LeNet5 | from lenet5_net import LeNet5 | ||||
@@ -28,8 +29,6 @@ from mindarmour.attacks.iterative_gradient_method import \ | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
@@ -47,6 +46,7 @@ def test_momentum_diverse_input_iterative_method(): | |||||
""" | """ | ||||
M-DI2-FGSM Attack Test | M-DI2-FGSM Attack Test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -113,5 +113,77 @@ def test_momentum_diverse_input_iterative_method(): | |||||
(stop_time - start_time)/(batch_num*batch_size)) | (stop_time - start_time)/(batch_num*batch_size)) | ||||
def test_momentum_diverse_input_iterative_method_cpu(): | |||||
""" | |||||
M-DI2-FGSM Attack Test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 32 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
attack = MomentumDiverseInputIterativeMethod(net, loss_fn=loss) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
true_labels, batch_size=32) | |||||
stop_time = time.clock() | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
np.eye(10)[true_labels], | |||||
adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_momentum_diverse_input_iterative_method() | |||||
test_momentum_diverse_input_iterative_method_cpu() |
@@ -27,10 +27,9 @@ from mindarmour.utils.logger import LogUtil | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="Ascend") | |||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'HopSkipJumpAttack' | TAG = 'HopSkipJumpAttack' | ||||
@@ -88,6 +87,89 @@ def test_nes_mnist_attack(): | |||||
""" | """ | ||||
hsja-Attack test | hsja-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
net.set_train(False) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
# the number of batches of attacking samples | |||||
batch_num = 5 | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", | |||||
accuracy) | |||||
test_images = np.concatenate(test_images) | |||||
# attacking | |||||
scene = 'Query_Limit' | |||||
if scene == 'Query_Limit': | |||||
top_k = -1 | |||||
elif scene == 'Partial_Info': | |||||
top_k = 5 | |||||
elif scene == 'Label_Only': | |||||
top_k = 5 | |||||
success = 0 | |||||
queries_num = 0 | |||||
nes_instance = NES(model, scene, top_k=top_k) | |||||
test_length = 32 | |||||
advs = [] | |||||
for img_index in range(test_length): | |||||
# Initial image and class selection | |||||
initial_img = test_images[img_index] | |||||
orig_class = true_labels[img_index] | |||||
initial_img = [initial_img] | |||||
target_class = random_target_labels([orig_class], true_labels) | |||||
target_image = create_target_images(test_images, true_labels, | |||||
target_class) | |||||
nes_instance.set_target_images(target_image) | |||||
tag, adv, queries = nes_instance.generate(initial_img, target_class) | |||||
if tag[0]: | |||||
success += 1 | |||||
queries_num += queries[0] | |||||
advs.append(adv) | |||||
advs = np.reshape(advs, (len(advs), 1, 32, 32)) | |||||
adv_pred = np.argmax(model.predict(advs), axis=1) | |||||
adv_accuracy = np.mean(np.equal(adv_pred, true_labels[:test_length])) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
adv_accuracy) | |||||
def test_nes_mnist_attack_cpu(): | |||||
""" | |||||
hsja-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE) | |||||
context.set_context(device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -164,4 +246,4 @@ def test_nes_mnist_attack(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_nes_mnist_attack() | |||||
test_nes_mnist_attack_cpu() |
@@ -20,6 +20,7 @@ from mindspore import Model | |||||
from mindspore import Tensor | from mindspore import Tensor | ||||
from mindspore import context | from mindspore import context | ||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
from mindspore.nn import SoftmaxCrossEntropyWithLogits | |||||
from scipy.special import softmax | from scipy.special import softmax | ||||
from lenet5_net import LeNet5 | from lenet5_net import LeNet5 | ||||
@@ -27,13 +28,12 @@ from mindarmour.attacks.iterative_gradient_method import ProjectedGradientDescen | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'PGD_Test' | TAG = 'PGD_Test' | ||||
@@ -46,6 +46,7 @@ def test_projected_gradient_descent_method(): | |||||
""" | """ | ||||
PGD-Attack test | PGD-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -113,5 +114,78 @@ def test_projected_gradient_descent_method(): | |||||
(stop_time - start_time)/(batch_num*batch_size)) | (stop_time - start_time)/(batch_num*batch_size)) | ||||
def test_projected_gradient_descent_method_cpu(): | |||||
""" | |||||
PGD-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size) | |||||
# prediction accuracy before attack | |||||
model = Model(net) | |||||
batch_num = 32 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(Tensor(images)).asnumpy(), | |||||
axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
attack = ProjectedGradientDescent(net, eps=0.3, loss_fn=loss) | |||||
start_time = time.clock() | |||||
adv_data = attack.batch_generate(np.concatenate(test_images), | |||||
true_labels, batch_size=32) | |||||
stop_time = time.clock() | |||||
np.save('./adv_data', adv_data) | |||||
pred_logits_adv = model.predict(Tensor(adv_data)).asnumpy() | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", accuracy_adv) | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images).transpose(0, 2, 3, 1), | |||||
np.eye(10)[true_labels], | |||||
adv_data.transpose(0, 2, 3, 1), | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_projected_gradient_descent_method() | |||||
test_projected_gradient_descent_method_cpu() |
@@ -26,8 +26,6 @@ from mindarmour.attacks.black.pointwise_attack import PointWiseAttack | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
@@ -60,6 +58,85 @@ def test_pointwise_attack_on_mnist(): | |||||
""" | """ | ||||
Salt-and-Pepper-Attack test | Salt-and-Pepper-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) | |||||
# attacking | |||||
is_target = False | |||||
attack = PointWiseAttack(model=model, is_targeted=is_target) | |||||
if is_target: | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
else: | |||||
targeted_labels = true_labels | |||||
success_list, adv_data, query_list = attack.generate( | |||||
np.concatenate(test_images), targeted_labels) | |||||
success_list = np.arange(success_list.shape[0])[success_list] | |||||
LOGGER.info(TAG, 'success_list: %s', success_list) | |||||
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) | |||||
adv_preds = [] | |||||
for ite_data in adv_data: | |||||
pred_logits_adv = model.predict(ite_data) | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
adv_preds.extend(pred_logits_adv) | |||||
accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %g", | |||||
accuracy_adv) | |||||
test_labels_onehot = np.eye(10)[true_labels] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images), | |||||
test_labels_onehot, adv_data, | |||||
adv_preds, targeted=is_target, | |||||
target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
def test_pointwise_attack_on_mnist_cpu(): | |||||
""" | |||||
Salt-and-Pepper-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -134,4 +211,4 @@ def test_pointwise_attack_on_mnist(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_pointwise_attack_on_mnist() | |||||
test_pointwise_attack_on_mnist_cpu() |
@@ -27,12 +27,12 @@ from mindarmour.attacks.black.pso_attack import PSOAttack | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
LOGGER.set_level('INFO') | |||||
TAG = 'PSO_Attack' | TAG = 'PSO_Attack' | ||||
@@ -58,6 +58,80 @@ def test_pso_attack_on_mnist(): | |||||
""" | """ | ||||
PSO-Attack test | PSO-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) | |||||
# attacking | |||||
attack = PSOAttack(model, bounds=(0.0, 1.0), pm=0.5, sparse=True) | |||||
start_time = time.clock() | |||||
success_list, adv_data, query_list = attack.generate( | |||||
np.concatenate(test_images), np.concatenate(test_labels)) | |||||
stop_time = time.clock() | |||||
LOGGER.info(TAG, 'success_list: %s', success_list) | |||||
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) | |||||
pred_logits_adv = model.predict(adv_data) | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
pred_labels_adv = np.argmax(pred_logits_adv, axis=1) | |||||
accuracy_adv = np.mean(np.equal(pred_labels_adv, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %s", | |||||
accuracy_adv) | |||||
test_labels_onehot = np.eye(10)[np.concatenate(test_labels)] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images), | |||||
test_labels_onehot, adv_data, | |||||
pred_logits_adv) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
LOGGER.info(TAG, 'The average structural similarity between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_ssim()) | |||||
LOGGER.info(TAG, 'The average costing time is %s', | |||||
(stop_time - start_time)/(batch_num*batch_size)) | |||||
def test_pso_attack_on_mnist_cpu(): | |||||
""" | |||||
PSO-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -127,4 +201,4 @@ def test_pso_attack_on_mnist(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_pso_attack_on_mnist() | |||||
test_pso_attack_on_mnist_cpu() |
@@ -26,8 +26,6 @@ from mindarmour.attacks.black.salt_and_pepper_attack import SaltAndPepperNoiseAt | |||||
from mindarmour.evaluations.attack_evaluation import AttackEvaluate | from mindarmour.evaluations.attack_evaluation import AttackEvaluate | ||||
from mindarmour.utils.logger import LogUtil | from mindarmour.utils.logger import LogUtil | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
@@ -60,6 +58,89 @@ def test_salt_and_pepper_attack_on_mnist(): | |||||
""" | """ | ||||
Salt-and-Pepper-Attack test | Salt-and-Pepper-Attack test | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# upload trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
# get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
# prediction accuracy before attack | |||||
model = ModelToBeAttacked(net) | |||||
batch_num = 3 # the number of batches of attacking samples | |||||
test_images = [] | |||||
test_labels = [] | |||||
predict_labels = [] | |||||
i = 0 | |||||
for data in ds.create_tuple_iterator(): | |||||
i += 1 | |||||
images = data[0].astype(np.float32) | |||||
labels = data[1] | |||||
test_images.append(images) | |||||
test_labels.append(labels) | |||||
pred_labels = np.argmax(model.predict(images), axis=1) | |||||
predict_labels.append(pred_labels) | |||||
if i >= batch_num: | |||||
break | |||||
LOGGER.debug(TAG, 'model input image shape is: {}'.format(np.array(test_images).shape)) | |||||
predict_labels = np.concatenate(predict_labels) | |||||
true_labels = np.concatenate(test_labels) | |||||
accuracy = np.mean(np.equal(predict_labels, true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy before attacking is : %g", accuracy) | |||||
# attacking | |||||
is_target = False | |||||
attack = SaltAndPepperNoiseAttack(model=model, | |||||
is_targeted=is_target, | |||||
sparse=True) | |||||
if is_target: | |||||
targeted_labels = np.random.randint(0, 10, size=len(true_labels)) | |||||
for i, true_l in enumerate(true_labels): | |||||
if targeted_labels[i] == true_l: | |||||
targeted_labels[i] = (targeted_labels[i] + 1) % 10 | |||||
else: | |||||
targeted_labels = true_labels | |||||
LOGGER.debug(TAG, 'input shape is: {}'.format(np.concatenate(test_images).shape)) | |||||
success_list, adv_data, query_list = attack.generate( | |||||
np.concatenate(test_images), targeted_labels) | |||||
success_list = np.arange(success_list.shape[0])[success_list] | |||||
LOGGER.info(TAG, 'success_list: %s', success_list) | |||||
LOGGER.info(TAG, 'average of query times is : %s', np.mean(query_list)) | |||||
adv_preds = [] | |||||
for ite_data in adv_data: | |||||
pred_logits_adv = model.predict(ite_data) | |||||
# rescale predict confidences into (0, 1). | |||||
pred_logits_adv = softmax(pred_logits_adv, axis=1) | |||||
adv_preds.extend(pred_logits_adv) | |||||
accuracy_adv = np.mean(np.equal(np.max(adv_preds, axis=1), true_labels)) | |||||
LOGGER.info(TAG, "prediction accuracy after attacking is : %g", | |||||
accuracy_adv) | |||||
test_labels_onehot = np.eye(10)[true_labels] | |||||
attack_evaluate = AttackEvaluate(np.concatenate(test_images), | |||||
test_labels_onehot, adv_data, | |||||
adv_preds, targeted=is_target, | |||||
target_label=targeted_labels) | |||||
LOGGER.info(TAG, 'mis-classification rate of adversaries is : %s', | |||||
attack_evaluate.mis_classification_rate()) | |||||
LOGGER.info(TAG, 'The average confidence of adversarial class is : %s', | |||||
attack_evaluate.avg_conf_adv_class()) | |||||
LOGGER.info(TAG, 'The average confidence of true class is : %s', | |||||
attack_evaluate.avg_conf_true_class()) | |||||
LOGGER.info(TAG, 'The average distance (l0, l2, linf) between original ' | |||||
'samples and adversarial samples are: %s', | |||||
attack_evaluate.avg_lp_distance()) | |||||
def test_salt_and_pepper_attack_on_mnist_cpu(): | |||||
""" | |||||
Salt-and-Pepper-Attack test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# upload trained network | # upload trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -138,4 +219,4 @@ def test_salt_and_pepper_attack_on_mnist(): | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
test_salt_and_pepper_attack_on_mnist() | |||||
test_salt_and_pepper_attack_on_mnist_cpu() |
@@ -31,7 +31,6 @@ from mindarmour.utils.logger import LogUtil | |||||
sys.path.append("..") | sys.path.append("..") | ||||
from data_processing import generate_mnist_dataset | from data_processing import generate_mnist_dataset | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
LOGGER = LogUtil.get_instance() | LOGGER = LogUtil.get_instance() | ||||
TAG = 'Nad_Example' | TAG = 'Nad_Example' | ||||
@@ -46,6 +45,7 @@ def test_nad_method(): | |||||
""" | """ | ||||
NAD-Defense test. | NAD-Defense test. | ||||
""" | """ | ||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
# 1. load trained network | # 1. load trained network | ||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | ||||
net = LeNet5() | net = LeNet5() | ||||
@@ -136,6 +136,100 @@ def test_nad_method(): | |||||
np.mean(acc_list)) | np.mean(acc_list)) | ||||
def test_nad_method_cpu(): | |||||
""" | |||||
NAD-Defense test for CPU device. | |||||
""" | |||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||||
# 1. load trained network | |||||
ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' | |||||
net = LeNet5() | |||||
load_dict = load_checkpoint(ckpt_name) | |||||
load_param_into_net(net, load_dict) | |||||
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||||
opt = nn.Momentum(net.trainable_params(), 0.01, 0.09) | |||||
nad = NaturalAdversarialDefense(net, loss_fn=loss, optimizer=opt, | |||||
bounds=(0.0, 1.0), eps=0.3) | |||||
# 2. get test data | |||||
data_list = "./MNIST_unzip/test" | |||||
batch_size = 32 | |||||
ds_test = generate_mnist_dataset(data_list, batch_size=batch_size) | |||||
inputs = [] | |||||
labels = [] | |||||
for data in ds_test.create_tuple_iterator(): | |||||
inputs.append(data[0].astype(np.float32)) | |||||
labels.append(data[1]) | |||||
inputs = np.concatenate(inputs) | |||||
labels = np.concatenate(labels) | |||||
# 3. get accuracy of test data on original model | |||||
net.set_train(False) | |||||
acc_list = [] | |||||
batchs = inputs.shape[0] // batch_size | |||||
for i in range(batchs): | |||||
batch_inputs = inputs[i*batch_size : (i + 1)*batch_size] | |||||
batch_labels = labels[i*batch_size : (i + 1)*batch_size] | |||||
logits = net(Tensor(batch_inputs)).asnumpy() | |||||
label_pred = np.argmax(logits, axis=1) | |||||
acc_list.append(np.mean(batch_labels == label_pred)) | |||||
LOGGER.debug(TAG, 'accuracy of TEST data on original model is : %s', | |||||
np.mean(acc_list)) | |||||
# 4. get adv of test data | |||||
attack = FastGradientSignMethod(net, eps=0.3, loss_fn=loss) | |||||
adv_data = attack.batch_generate(inputs, labels) | |||||
LOGGER.debug(TAG, 'adv_data.shape is : %s', adv_data.shape) | |||||
# 5. get accuracy of adv data on original model | |||||
net.set_train(False) | |||||
acc_list = [] | |||||
batchs = adv_data.shape[0] // batch_size | |||||
for i in range(batchs): | |||||
batch_inputs = adv_data[i*batch_size : (i + 1)*batch_size] | |||||
batch_labels = labels[i*batch_size : (i + 1)*batch_size] | |||||
logits = net(Tensor(batch_inputs)).asnumpy() | |||||
label_pred = np.argmax(logits, axis=1) | |||||
acc_list.append(np.mean(batch_labels == label_pred)) | |||||
LOGGER.debug(TAG, 'accuracy of adv data on original model is : %s', | |||||
np.mean(acc_list)) | |||||
# 6. defense | |||||
net.set_train() | |||||
nad.batch_defense(inputs, labels, batch_size=32, epochs=10) | |||||
# 7. get accuracy of test data on defensed model | |||||
net.set_train(False) | |||||
acc_list = [] | |||||
batchs = inputs.shape[0] // batch_size | |||||
for i in range(batchs): | |||||
batch_inputs = inputs[i*batch_size : (i + 1)*batch_size] | |||||
batch_labels = labels[i*batch_size : (i + 1)*batch_size] | |||||
logits = net(Tensor(batch_inputs)).asnumpy() | |||||
label_pred = np.argmax(logits, axis=1) | |||||
acc_list.append(np.mean(batch_labels == label_pred)) | |||||
LOGGER.debug(TAG, 'accuracy of TEST data on defensed model is : %s', | |||||
np.mean(acc_list)) | |||||
# 8. get accuracy of adv data on defensed model | |||||
acc_list = [] | |||||
batchs = adv_data.shape[0] // batch_size | |||||
for i in range(batchs): | |||||
batch_inputs = adv_data[i*batch_size : (i + 1)*batch_size] | |||||
batch_labels = labels[i*batch_size : (i + 1)*batch_size] | |||||
logits = net(Tensor(batch_inputs)).asnumpy() | |||||
label_pred = np.argmax(logits, axis=1) | |||||
acc_list.append(np.mean(batch_labels == label_pred)) | |||||
LOGGER.debug(TAG, 'accuracy of adv data on defensed model is : %s', | |||||
np.mean(acc_list)) | |||||
if __name__ == '__main__': | if __name__ == '__main__': | ||||
LOGGER.set_level(logging.DEBUG) | LOGGER.set_level(logging.DEBUG) | ||||
test_nad_method() | |||||
test_nad_method_cpu() |
@@ -46,7 +46,8 @@ class NaturalAdversarialDefense(AdversarialDefenseWithAttacks): | |||||
attack = FastGradientSignMethod(network, | attack = FastGradientSignMethod(network, | ||||
eps=eps, | eps=eps, | ||||
alpha=None, | alpha=None, | ||||
bounds=bounds) | |||||
bounds=bounds, | |||||
loss_fn=loss_fn) | |||||
super(NaturalAdversarialDefense, self).__init__( | super(NaturalAdversarialDefense, self).__init__( | ||||
network, | network, | ||||
[attack], | [attack], | ||||