You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

warmup_cosine_annealing_lr.py 1.5 kB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. warm up cosine annealing learning rate.
  17. """
  18. import math
  19. import numpy as np
  20. from .linear_warmup import linear_warmup_lr
  21. def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, t_max, eta_min=0):
  22. """warm up cosine annealing learning rate."""
  23. base_lr = lr
  24. warmup_init_lr = 0
  25. total_steps = int(max_epoch*steps_per_epoch)
  26. warmup_steps = int(warmup_epochs*steps_per_epoch)
  27. lr_each_step = []
  28. for i in range(total_steps):
  29. last_epoch = i // steps_per_epoch
  30. if i < warmup_steps:
  31. lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
  32. else:
  33. lr = eta_min + (base_lr - eta_min)*(1. + math.cos(math.pi*last_epoch / t_max)) / 2
  34. lr_each_step.append(lr)
  35. return np.array(lr_each_step).astype(np.float32)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。