|
1234567891011121314151617181920212223242526272829303132333435363738 |
- # Examples
- ## Introduction
- This package includes application demos for all developed tools of MindArmour. Through these demos, you will soon
- master those tools of MindArmour. Let's Start!
-
- ## Preparation
- Most of those demos are implemented based on LeNet5 and MNIST dataset. As a preparation, we should download MNIST and
- train a LeNet5 model first.
- ### 1. download dataset
- The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples
- . It is a subset of a larger set available from MNIST. The digits have been size-normalized and centered in a fixed-size image.
-
- ```sh
- $ cd examples/common/dataset
- $ mkdir MNIST
- $ cd MNIST
- $ mkdir train
- $ mkdir test
- $ cd train
- $ wget "http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz"
- $ wget "http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz"
- $ gzip train-images-idx3-ubyte.gz -d
- $ gzip train-labels-idx1-ubyte.gz -d
- $ cd ../test
- $ wget "http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz"
- $ wget "http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz"
- $ gzip t10k-images-idx3-ubyte.gz -d
- $ gzip t10k-images-idx3-ubyte.gz -d
- ```
-
- ### 2. trian LeNet5 model
- After training the network, you will obtain a group of ckpt files. Those ckpt files save the trained model parameters
- of LeNet5, which can be used in 'examples/ai_fuzzer' and 'examples/model_security'.
- ```sh
- $ cd examples/common/networks/lenet5
- $ python mnist_train.py
-
- ```
|