|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_BATCH_OPS_H_
- #define GE_OP_BATCH_OPS_H_
-
- #include "graph/operator_reg.h"
-
- namespace ge {
-
- /**
- *@brief Creates batches of tensors in "x_tensors".
-
- *@par Inputs:
- *Input "x_tensors" is a list or a dictionary of tensors. \n
- *x_tensors: The list or dictionary of tensors to enqueue.
-
- *@par Attributes:
- *@li num_batch_threads: The number of threads enqueuing "x_tensors". \n
- The batching will be nondeterministic if "num_batch_threads" > 1.
- *@li max_batch_size: The maximum batch size pulled from the queue.
- *@li max_enqueued_batches: The maximum number of batches pulled from the queue.
- *@li batch_timeout_micros: The batch processing timeout, in microseconds.
- *@li allowed_batch_sizes: The allowed batch size pulled from the queue.
- *@li grad_timeout_micros: The gradient batch processing timeout, \n
- in microseconds.
- *@li container: If non-empty, this queue is placed in the given container. \n
- Otherwise, a default container is used.
- *@li shared_name: If set, this queue will be shared under the given name \n
- across multiple sessions.
- *@li batching_queue: The queue resource container.
-
- *@par Outputs:
- *@li y_index: A Tensor. The index of a BatchTensor. Must be in row-major order.
- *@li y_id: A Tensor. The ID of a BatchTensor. Must be in row-major order.
- *@li y_tensors: A list or dictionary of tensors with \n
- the same types as "x_tensors".
-
- *@attention Constraints: \n
- *Batch runs on the Ascend AI CPU, which delivers poor performance. \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator Batch.
- */
-
- REG_OP(Batch)
- .DYNAMIC_INPUT(x_tensors, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, \
- DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y_index, TensorType({ DT_INT64 }))
- .OUTPUT(y_id, TensorType({ DT_INT64 }))
- .DYNAMIC_OUTPUT(y_tensors, TensorType({DT_INT8, DT_UINT8, DT_INT16, \
- DT_UINT16, DT_INT32, DT_INT64, DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_BOOL}))
- .REQUIRED_ATTR(num_batch_threads, Int)
- .REQUIRED_ATTR(max_batch_size, Int)
- .ATTR(max_enqueued_batches, Int, 10)
- .REQUIRED_ATTR(batch_timeout_micros, Int)
- .ATTR(allowed_batch_sizes, ListInt, {})
- .REQUIRED_ATTR(grad_timeout_micros, Int)
- .ATTR(container, String, "")
- .ATTR(shared_name, String, "")
- .ATTR(batching_queue, String, "")
- .OP_END_FACTORY_REG(Batch)
-
- /**
- *@brief Reverses the operation of Batch for a single output Tensor.
-
- *@par Inputs:
- *Input "x_tensors" is a list or a dictionary of tensors. \n
- * @li x_tensors: The list or dictionary of tensors to enqueue.
- * @li index: The matching "batch_index" obtained from Batch.
- * @li id: The "id" scalar emitted by Batch.
-
- *@par Attributes:
- *@li timeout_micros: The unbatch processing timeout, in microseconds.
- *@li container: If non-empty, this queue is placed in the given container. \n
- Otherwise, a default container is used.
- *@li shared_name: If set, this queue will be shared under the given name \n
- across multiple sessions.
-
- *@par Outputs:
- *y_tensor: A list or dictionary of tensors with the same types as "x_tensors".
-
- *@attention Constraints: \n
- *Unbatch runs on the Ascend AI CPU, which delivers poor performance. \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator Unbatch.
- */
-
- REG_OP(Unbatch)
- .INPUT(x_tensor, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
- .INPUT(index, TensorType({DT_INT64}))
- .INPUT(id, TensorType({DT_INT64}))
- .OUTPUT(y_tensor, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
- .REQUIRED_ATTR(timeout_micros, Int)
- .ATTR(container, String, "")
- .ATTR(shared_name, String, "")
- .OP_END_FACTORY_REG(Unbatch)
-
- /**
- *@brief Acts like Batch but using the given "batch_index" index of batching \n
- things as they become available.
-
- *@par Inputs:
- *Input "x_input" is a list or a dictionary of tensors. \n
- * @li x_input: The input to the Unbatch operation.
- * @li index: The batch_index given to the Unbatch operation.
- * @li id: The "id" scalar emitted by Batch.
- * @li grad: The downstream gradient.
-
- *@par Attributes:
- *@li container: If non-empty, this queue is placed in the given container. \n
- Otherwise, a default container is used.
- *@li shared_name: If set, this queue will be shared under the given name \n
- across multiple sessions.
-
- *@par Outputs:
- *y_grad: The return value, either an empty tensor or the batched gradient.
-
- *@attention Constraints: \n
- *UnbatchGrad runs on the Ascend AI CPU, which delivers poor performance. \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator UnbatchGrad.
- */
-
- REG_OP(UnbatchGrad)
- .INPUT(x_input, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
- .INPUT(index, TensorType({DT_INT64}))
- .INPUT(grad, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
- .INPUT(id, TensorType({DT_INT64}))
- .OUTPUT(y_grad, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_BOOL, DT_FLOAT, DT_DOUBLE}))
- .ATTR(container, String, "")
- .ATTR(shared_name, String, "")
- .OP_END_FACTORY_REG(UnbatchGrad)
- } // namespace ge
-
- #endif // GE_OP_BATCH_OPS_H_
|