|
- // Copyright (c) ONNX Project Contributors.
- // Licensed under the MIT license.
-
- syntax = "proto3";
-
- package ge.onnx;
-
- // Overview
- //
- // ONNX is an open specification that is comprised of the following components:
- //
- // 1) A definition of an extensible computation graph model.
- // 2) Definitions of standard data types.
- // 3) Definitions of built-in operators.
- //
- // This document describes the syntax of models and their computation graphs,
- // as well as the standard data types. Together, they are referred to as the ONNX
- // Intermediate Representation, or 'IR' for short.
- //
- // The normative semantic specification of the ONNX IR is found in docs/IR.md.
- // Definitions of the built-in neural network operators may be found in docs/Operators.md.
-
- // Notes
- //
- // Release
- //
- // We are still in the very early stage of defining ONNX. The current
- // version of ONNX is a starting point. While we are actively working
- // towards a complete spec, we would like to get the community involved
- // by sharing our working version of ONNX.
- //
- // Protobuf compatibility
- //
- // To simplify framework compatibility, ONNX is defined using the subset of protobuf
- // that is compatible with both protobuf v2 and v3. This means that we do not use any
- // protobuf features that are only available in one of the two versions.
- //
- // Here are the most notable contortions we have to carry out to work around
- // these limitations:
- //
- // - No 'map' (added protobuf 3.0). We instead represent mappings as lists
- // of key-value pairs, where order does not matter and duplicates
- // are not allowed.
-
-
- // Versioning
- //
- // ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md
- //
- // To be compatible with both proto2 and proto3, we will use a version number
- // that is not defined by the default value but an explicit enum number.
- enum Version {
- // proto3 requires the first enum value to be zero.
- // We add this just to appease the compiler.
- _START_VERSION = 0;
- // The version field is always serialized and we will use it to store the
- // version that the graph is generated from. This helps us set up version
- // control.
- // For the IR, we are using simple numbers starting with with 0x00000001,
- // which was the version we published on Oct 10, 2017.
- IR_VERSION_2017_10_10 = 0x0000000000000001;
-
- // IR_VERSION 2 published on Oct 30, 2017
- // - Added type discriminator to AttributeProto to support proto3 users
- IR_VERSION_2017_10_30 = 0x0000000000000002;
-
- // IR VERSION 3 published on Nov 3, 2017
- // - For operator versioning:
- // - Added new message OperatorSetIdProto
- // - Added opset_import in ModelProto
- // - For vendor extensions, added domain in NodeProto
- IR_VERSION_2017_11_3 = 0x0000000000000003;
-
- // IR VERSION 4 published on Jan 22, 2019
- // - Relax constraint that initializers should be a subset of graph inputs
- // - Add type BFLOAT16
- IR_VERSION_2019_1_22 = 0x0000000000000004;
-
- // IR VERSION 5 published on March 18, 2019
- // - Add message TensorAnnotation.
- // - Add quantization annotation in GraphProto to map tensor with its scale and zero point quantization parameters.
- IR_VERSION_2019_3_18 = 0x0000000000000005;
-
- // IR VERSION 6 published on Sep 19, 2019
- // - Add support for sparse tensor constants stored in model.
- // - Add message SparseTensorProto
- // - Add sparse initializers
- IR_VERSION = 0x0000000000000006;
- }
-
- // Attributes
- //
- // A named attribute containing either singular float, integer, string, graph,
- // and tensor values, or repeated float, integer, string, graph, and tensor values.
- // An AttributeProto MUST contain the name field, and *only one* of the
- // following content fields, effectively enforcing a C/C++ union equivalent.
- message AttributeProto {
-
- // Note: this enum is structurally identical to the OpSchema::AttrType
- // enum defined in schema.h. If you rev one, you likely need to rev the other.
- enum AttributeType {
- UNDEFINED = 0;
- FLOAT = 1;
- INT = 2;
- STRING = 3;
- TENSOR = 4;
- GRAPH = 5;
- SPARSE_TENSOR = 11;
-
- FLOATS = 6;
- INTS = 7;
- STRINGS = 8;
- TENSORS = 9;
- GRAPHS = 10;
- SPARSE_TENSORS = 12;
- }
-
- // The name field MUST be present for this version of the IR.
- string name = 1; // namespace Attribute
-
- // if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- // In this case, this AttributeProto does not contain data, and it's a reference of attribute
- // in parent scope.
- // NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
- string ref_attr_name = 21;
-
- // A human-readable documentation for this attribute. Markdown is allowed.
- string doc_string = 13;
-
- // The type field MUST be present for this version of the IR.
- // For 0.0.1 versions of the IR, this field was not defined, and
- // implementations needed to use has_field hueristics to determine
- // which value field was in use. For IR_VERSION 0.0.2 or later, this
- // field MUST be set and match the f|i|s|t|... field in use. This
- // change was made to accomodate proto3 implementations.
- AttributeType type = 20; // discriminator that indicates which field below is in use
-
- // Exactly ONE of the following fields must be present for this version of the IR
- float f = 2; // float
- int64 i = 3; // int
- bytes s = 4; // UTF-8 string
- TensorProto t = 5; // tensor value
- GraphProto g = 6; // graph
- SparseTensorProto sparse_tensor = 22; // sparse tensor value
- // Do not use field below, it's deprecated.
- // optional ValueProto v = 12; // value - subsumes everything but graph
-
- repeated float floats = 7; // list of floats
- repeated int64 ints = 8; // list of ints
- repeated bytes strings = 9; // list of UTF-8 strings
- repeated TensorProto tensors = 10; // list of tensors
- repeated GraphProto graphs = 11; // list of graph
- repeated SparseTensorProto sparse_tensors = 23; // list of sparse tensors
- }
-
- // Defines information on value, including the name, the type, and
- // the shape of the value.
- message ValueInfoProto {
- // This field MUST be present in this version of the IR.
- string name = 1; // namespace Value
- // This field MUST be present in this version of the IR for
- // inputs and outputs of the top-level graph.
- TypeProto type = 2;
- // A human-readable documentation for this value. Markdown is allowed.
- string doc_string = 3;
- }
-
- // Nodes
- //
- // Computation graphs are made up of a DAG of nodes, which represent what is
- // commonly called a "layer" or "pipeline stage" in machine learning frameworks.
- //
- // For example, it can be a node of type "Conv" that takes in an image, a filter
- // tensor and a bias tensor, and produces the convolved output.
- message NodeProto {
- repeated string input = 1; // namespace Value
- repeated string output = 2; // namespace Value
-
- // An optional identifier for this node in a graph.
- // This field MAY be absent in ths version of the IR.
- string name = 3; // namespace Node
-
- // The symbolic identifier of the Operator to execute.
- string op_type = 4; // namespace Operator
- // The domain of the OperatorSet that specifies the operator named by op_type.
- string domain = 7; // namespace Domain
-
- // Additional named attributes.
- repeated AttributeProto attribute = 5;
-
- // A human-readable documentation for this node. Markdown is allowed.
- string doc_string = 6;
- }
-
- // Models
- //
- // ModelProto is a top-level file/container format for bundling a ML model and
- // associating its computation graph with metadata.
- //
- // The semantics of the model are described by the associated GraphProto.
- message ModelProto {
- // The version of the IR this model targets. See Version enum above.
- // This field MUST be present.
- int64 ir_version = 1;
-
- // The OperatorSets this model relies on.
- // All ModelProtos MUST have at least one entry that
- // specifies which version of the ONNX OperatorSet is
- // being imported.
- //
- // All nodes in the ModelProto's graph will bind against the operator
- // with the same-domain/same-op_type operator with the HIGHEST version
- // in the referenced operator sets.
- repeated OperatorSetIdProto opset_import = 8;
-
- // The name of the framework or tool used to generate this model.
- // This field SHOULD be present to indicate which implementation/tool/framework
- // emitted the model.
- string producer_name = 2;
-
- // The version of the framework or tool used to generate this model.
- // This field SHOULD be present to indicate which implementation/tool/framework
- // emitted the model.
- string producer_version = 3;
-
- // Domain name of the model.
- // We use reverse domain names as name space indicators. For example:
- // `com.facebook.fair` or `com.microsoft.cognitiveservices`
- //
- // Together with `model_version` and GraphProto.name, this forms the unique identity of
- // the graph.
- string domain = 4;
-
- // The version of the graph encoded. See Version enum below.
- int64 model_version = 5;
-
- // A human-readable documentation for this model. Markdown is allowed.
- string doc_string = 6;
-
- // The parameterized graph that is evaluated to execute the model.
- GraphProto graph = 7;
-
- // Named metadata values; keys should be distinct.
- repeated StringStringEntryProto metadata_props = 14;
- };
-
- // StringStringEntryProto follows the pattern for cross-proto-version maps.
- // See https://developers.google.com/protocol-buffers/docs/proto3#maps
- message StringStringEntryProto {
- string key = 1;
- string value= 2;
- };
-
- message TensorAnnotation {
- string tensor_name = 1;
- // <key, value> pairs to annotate tensor specified by <tensor_name> above.
- // The keys used in the mapping below must be pre-defined in ONNX spec.
- // For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
- // quantization parameter keys.
- repeated StringStringEntryProto quant_parameter_tensor_names = 2;
- }
-
-
-
- // Graphs
- //
- // A graph defines the computational logic of a model and is comprised of a parameterized
- // list of nodes that form a directed acyclic graph based on their inputs and outputs.
- // This is the equivalent of the "network" or "graph" in many deep learning
- // frameworks.
- message GraphProto {
- // The nodes in the graph, sorted topologically.
- repeated NodeProto node = 1;
-
- // The name of the graph.
- string name = 2; // namespace Graph
-
- // A list of named tensor values, used to specify constant inputs of the graph.
- // Each TensorProto entry must have a distinct name (within the list) that
- // MAY also appear in the input list.
- repeated TensorProto initializer = 5;
-
- // Initializers (see above) stored in sparse format.
- repeated SparseTensorProto sparse_initializer = 15;
-
- // A human-readable documentation for this graph. Markdown is allowed.
- string doc_string = 10;
-
- // The inputs and outputs of the graph.
- repeated ValueInfoProto input = 11;
- repeated ValueInfoProto output = 12;
-
- // Information for the values in the graph. The ValueInfoProto.name's
- // must be distinct. It is optional for a value to appear in value_info list.
- repeated ValueInfoProto value_info = 13;
-
- // This field carries information to indicate the mapping among a tensor and its
- // quantization parameter tensors. For example:
- // For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
- // which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
- repeated TensorAnnotation quantization_annotation = 14;
-
- // DO NOT USE the following fields, they were deprecated from earlier versions.
- // repeated string input = 3;
- // repeated string output = 4;
- // optional int64 ir_version = 6;
- // optional int64 producer_version = 7;
- // optional string producer_tag = 8;
- // optional string domain = 9;
- }
-
- // Tensors
- //
- // A serialized tensor value.
- message TensorProto {
- enum DataType {
- UNDEFINED = 0;
- // Basic types.
- FLOAT = 1; // float
- UINT8 = 2; // uint8_t
- INT8 = 3; // int8_t
- UINT16 = 4; // uint16_t
- INT16 = 5; // int16_t
- INT32 = 6; // int32_t
- INT64 = 7; // int64_t
- STRING = 8; // string
- BOOL = 9; // bool
-
- // IEEE754 half-precision floating-point format (16 bits wide).
- // This format has 1 sign bit, 5 exponent bits, and 10 mantissa bits.
- FLOAT16 = 10;
-
- DOUBLE = 11;
- UINT32 = 12;
- UINT64 = 13;
- COMPLEX64 = 14; // complex with float32 real and imaginary components
- COMPLEX128 = 15; // complex with float64 real and imaginary components
-
- // Non-IEEE floating-point format based on IEEE754 single-precision
- // floating-point number truncated to 16 bits.
- // This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits.
- BFLOAT16 = 16;
-
- // Future extensions go here.
- }
-
- // The shape of the tensor.
- repeated int64 dims = 1;
-
- // The data type of the tensor.
- // This field MUST have a valid TensorProto.DataType value
- int32 data_type = 2;
-
- // For very large tensors, we may want to store them in chunks, in which
- // case the following fields will specify the segment that is stored in
- // the current TensorProto.
- message Segment {
- int64 begin = 1;
- int64 end = 2;
- }
- Segment segment = 3;
-
- // Tensor content must be organized in row-major order.
- //
- // Depending on the data_type field, exactly one of the fields below with
- // name ending in _data is used to store the elements of the tensor.
-
- // For float and complex64 values
- // Complex64 tensors are encoded as a single array of floats,
- // with the real components appearing in odd numbered positions,
- // and the corresponding imaginary component apparing in the
- // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
- // is encoded as [1.0, 2.0 ,3.0 ,4.0]
- // When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
- repeated float float_data = 4 [packed = true];
-
- // For int32, uint8, int8, uint16, int16, bool, and float16 values
- // float16 values must be bit-wise converted to an uint16_t prior
- // to writing to the buffer.
- // When this field is present, the data_type field MUST be
- // INT32, INT16, INT8, UINT16, UINT8, BOOL, or FLOAT16
- repeated int32 int32_data = 5 [packed = true];
-
- // For strings.
- // Each element of string_data is a UTF-8 encoded Unicode
- // string. No trailing null, no leading BOM. The protobuf "string"
- // scalar type is not used to match ML community conventions.
- // When this field is present, the data_type field MUST be STRING
- repeated bytes string_data = 6;
-
- // For int64.
- // When this field is present, the data_type field MUST be INT64
- repeated int64 int64_data = 7 [packed = true];
-
- // Optionally, a name for the tensor.
- string name = 8; // namespace Value
-
- // A human-readable documentation for this tensor. Markdown is allowed.
- string doc_string = 12;
-
- // Serializations can either use one of the fields above, or use this
- // raw bytes field. The only exception is the string case, where one is
- // required to store the content in the repeated bytes string_data field.
- //
- // When this raw_data field is used to store tensor value, elements MUST
- // be stored in as fixed-width, little-endian order.
- // Floating-point data types MUST be stored in IEEE 754 format.
- // Complex64 elements must be written as two consecutive FLOAT values, real component first.
- // Complex128 elements must be written as two consecutive DOUBLE values, real component first.
- // Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
- //
- // Note: the advantage of specific field rather than the raw_data field is
- // that in some cases (e.g. int data), protobuf does a better packing via
- // variable length storage, and may lead to smaller binary footprint.
- // When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
- bytes raw_data = 9;
-
- // Data can be stored inside the protobuf file using type-specific fields or raw_data.
- // Alternatively, raw bytes data can be stored in an external file, using the external_data field.
- // external_data stores key-value pairs describing data location. Recognized keys are:
- // - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
- // protobuf model was stored
- // - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
- // Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
- // - "length" (optional) - number of bytes containing data. Integer stored as string.
- // - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
- repeated StringStringEntryProto external_data = 13;
-
- // Location of the data for this tensor. MUST be one of:
- // - DEFAULT - data stored inside the protobuf message. Data is stored in raw_data (if set) otherwise in type-specified field.
- // - EXTERNAL - data stored in an external location as described by external_data field.
- enum DataLocation {
- DEFAULT = 0;
- EXTERNAL = 1;
- }
-
- // If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- DataLocation data_location = 14;
-
- // For double
- // Complex128 tensors are encoded as a single array of doubles,
- // with the real components appearing in odd numbered positions,
- // and the corresponding imaginary component apparing in the
- // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
- // is encoded as [1.0, 2.0 ,3.0 ,4.0]
- // When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
- repeated double double_data = 10 [packed = true];
-
- // For uint64 and uint32 values
- // When this field is present, the data_type field MUST be
- // UINT32 or UINT64
- repeated uint64 uint64_data = 11 [packed = true];
- }
-
- // A serialized sparse-tensor value
- message SparseTensorProto {
- // The sequence of non-default values are encoded as a tensor of shape [NNZ].
- // The default-value is zero for numeric tensors, and empty-string for string tensors.
- TensorProto values = 1;
-
- // The indices of the non-default values, which may be stored in one of two formats.
- // (a) Indices can be a tensor of shape [NNZ, rank] with the [i,j]-th value
- // corresponding to the j-th index of the i-th value (in the values tensor).
- // (b) Indices can be a tensor of shape [NNZ], in which case the i-th value
- // must be the linearized-index of the i-th value (in the values tensor).
- // The linearized-index can be converted into an index tuple (k_1,...,k_rank)
- // using the shape provided below.
- // The indices must appear in ascending order without duplication.
- // In the first format, the ordering is lexicographic-ordering:
- // e.g., index-value [1,4] must appear before [2,1]
- TensorProto indices = 2;
-
- // The shape of the underlying dense-tensor: [dim_1, dim_2, ... dim_rank]
- repeated int64 dims = 3;
- }
-
- // Defines a tensor shape. A dimension can be either an integer value
- // or a symbolic variable. A symbolic variable represents an unknown
- // dimension.
- message TensorShapeProto {
- message Dimension {
- oneof value {
- int64 dim_value = 1;
- string dim_param = 2; // namespace Shape
- };
- // Standard denotation can optionally be used to denote tensor
- // dimensions with standard semantic descriptions to ensure
- // that operations are applied to the correct axis of a tensor.
- // Refer to https://github.com/onnx/onnx/blob/master/docs/DimensionDenotation.md#denotation-definition
- // for pre-defined dimension denotations.
- string denotation = 3;
- };
- repeated Dimension dim = 1;
- }
-
- // Types
- //
- // The standard ONNX data types.
- message TypeProto {
-
- message Tensor {
- // This field MUST NOT have the value of UNDEFINED
- // This field MUST have a valid TensorProto.DataType value
- // This field MUST be present for this version of the IR.
- int32 elem_type = 1;
- TensorShapeProto shape = 2;
- }
-
- // repeated T
- message Sequence {
- // The type and optional shape of each element of the sequence.
- // This field MUST be present for this version of the IR.
- TypeProto elem_type = 1;
- };
-
- // map<K,V>
- message Map {
- // This field MUST have a valid TensorProto.DataType value
- // This field MUST be present for this version of the IR.
- // This field MUST refer to an integral type ([U]INT{8|16|32|64}) or STRING
- int32 key_type = 1;
- // This field MUST be present for this version of the IR.
- TypeProto value_type = 2;
- };
-
- oneof value {
- // The type of a tensor.
- Tensor tensor_type = 1;
-
- // NOTE: DNN-only implementations of ONNX MAY elect to not support non-tensor values
- // as input and output to graphs and nodes. These types are needed to naturally
- // support classical ML operators. DNN operators SHOULD restrict their input
- // and output types to tensors.
-
- // The type of a sequence.
- Sequence sequence_type = 4;
-
- // The type of a map.
- Map map_type = 5;
-
- }
-
- // An optional denotation can be used to denote the whole
- // type with a standard semantic description as to what is
- // stored inside. Refer to https://github.com/onnx/onnx/blob/master/docs/TypeDenotation.md#type-denotation-definition
- // for pre-defined type denotations.
- string denotation = 6;
- }
-
- // Operator Sets
- //
- // OperatorSets are uniquely identified by a (domain, opset_version) pair.
- message OperatorSetIdProto {
- // The domain of the operator set being identified.
- // The empty string ("") or absence of this field implies the operator
- // set that is defined as part of the ONNX specification.
- // This field MUST be present in this version of the IR when referring to any other operator set.
- string domain = 1;
-
- // The version of the operator set being identified.
- // This field MUST be present in this version of the IR.
- int64 version = 2;
- }
|