|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file selection_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_SELECTION_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_SELECTION_OPS_H_
- #include "graph/operator_reg.h"
-
- namespace ge {
- /**
- *@brief Creates a sequence of numbers . \n
-
- *@par Inputs:
- *Three inputs, including:
- * @li start: A 0D Tensor (scalar). Acts as first entry in the range if "limit"
- * is not "None"; otherwise, acts as range limit and first entry defaults to "0".
- * The supported types are: float32, int32, double, int64.
- * @li limit: A 0D Tensor (scalar). Upper limit of sequence, exclusive. If "None",
- * defaults to the value of "start" while the first entry of the range
- * defaults to "0". The supported types are: float32, int32, double, int64.
- * @li delta: A 0D Tensor (scalar). Number that increments "start".
- * Defaults to "1". The supported types are: float32, int32, double, int64 . \n
-
- *@par Outputs:
- *y: A 1D Tensor . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator Range.
- */
- REG_OP(Range)
- .INPUT(start, TensorType({DT_FLOAT,DT_INT32,DT_DOUBLE,DT_INT64}))
- .INPUT(limit, TensorType({DT_FLOAT,DT_INT32,DT_DOUBLE,DT_INT64}))
- .INPUT(delta, TensorType({DT_FLOAT,DT_INT32,DT_DOUBLE,DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT,DT_INT32,DT_DOUBLE,DT_INT64}))
- .OP_END_FACTORY_REG(Range)
-
- /**
- *@brief: Creates a sequence of numbers . \n
-
- *@par Inputs:
- *Four inputs, including:
- * @li x: A 1D Tensor of type float32 or int32. The assistant data.
- * @li start: A 0D Tensor (scalar) of type float32 or int32. Acts as first entry in the range if "limit"
- * is not "None"; otherwise, acts as range limit and first entry defaults to "0".
- * @li limit: A 0D Tensor (scalar) of type float32 or int32.
- * Upper limit of sequence, exclusive. If "None",
- * defaults to the value of "start" while the first entry of the range
- * defaults to "0".
- * @li delta: A 0D Tensor (scalar) of type float32 or int32.
- * Number that increments "start". Defaults to "1" . \n
-
- *@par Outputs:
- *y: A 1D Tensor . \n
-
- *@par Quantization supported or not
- *Not supported
-
- *@par Quantized inference supported or not
- *Not supported
-
- *@par Multiple batches supported or not
- *Supported
-
- *@see Range()
- *@since V100R001C33
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use Range instead.
- */
- REG_OP(RangeD)
- .INPUT(x, TensorType({DT_FLOAT,DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT,DT_INT32}))
- .REQUIRED_ATTR(start, Float)
- .REQUIRED_ATTR(limit, Float)
- .REQUIRED_ATTR(delta, Float)
- .OP_END_FACTORY_REG(RangeD)
-
- /**
- *@brief Constructs a tensor by tiling a given tensor . \n
-
- *@par Inputs:
- *Two inputs, including:
- * @li x: A Tensor.
- * Must be one of the following types: float16, float32, double, int64, int32, uint8, uint16,
- uint32, uint64, int8, int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32.
- * @li multiples: A 1D Tensor of type int32 or int64.
- * The length must be the same as the number of dimensions in "input"
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- *@see TileD()
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator Tile.
- */
- REG_OP(Tile)
- .INPUT(x, TensorType::BasicType())
- .INPUT(multiples, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(Tile)
-
- /**
- *@brief Constructs a tensor by tiling a given tensor . \n
-
- *@par Inputs:
- *x: A Tensor. Must be one of the following types: float32, float16, int32 . \n
-
- *@par Attributes:
- *multiples: A required Tensor of type int32 or int64.
- * Number of replication times . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- *@see Tile()
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator Tile.
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use Tile instead.
- */
- REG_OP(TileD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .REQUIRED_ATTR(multiples, ListInt)
- .OP_END_FACTORY_REG(TileD)
-
- /**
- * @brief Gather slices from "x" into a tensor with shape specified by
- * "indices". "indices" is an K-dimensional integer tensor, best thought of as a
- * (K-1)-dimensional tensor of "indices" into "params", where each element
- * defines a slice of "params":
- * output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]]
- * "indices" defines slices into the first N dimensions of
- * "params", where
- * N = indices.shape[-1]
- * indices = [[0, 0], [1, 1]]
- * x = [['a', 'b'], ['c', 'd']]
- * output = ['a', 'd']
-
- * @par Inputs:
- * @li x: A Tensor of type BasicType.
- * @li indices: A Tensor of type IndexNumberType . \n
-
- * @par Outputs:
- * y: A Tensor of type BasicType.
- * @see GatherNd()
-
- * @attention Constraints:
- * @li "x" is one of the following types: float16, float32, double, int32,
- * uint8, int16, int8, complex64, int64, qint8, quint8, qint32, uint16,
- * complex128, uint32, uint64 . \n
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator GatherNd.
- */
- REG_OP(GatherNd)
- .INPUT(x, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(GatherNd)
-
- /**
- *@brief Gather slices from "x" according to "indices" by corresponding axis . \n
-
- *@par Inputs:
- *Three inputs, including:
- * @li x: A Tensor. Must be one of the following types: float32, float64, int32,
- * uint8, int16, int8, int64, qint8, quint8, qint32, qint16, quint16,
- * uint16, complex128, float16, uint32, uint64, complex64, complex128.
- * @li indices: A Tensor of type int32 or int64.
- * @li axis: A Tensor of type as int32 or int64,
- * Must be in the range [-rank(input_tensor), rank(input_tensor)) . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- *@attention Constraints:
- *Value in indices must be in range [0, x.shape[axis])
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator GatherV2 . \n
-
- */
- REG_OP(GatherV2)
- .INPUT(x, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(GatherV2)
-
- /**
- *@brief Gather slices from "x" according to "indices" by corresponding axis . \n
-
- *@par Inputs:
- *Two inputs, including:
- * @li x: A Tensor. Must be one of the following types: float32, float16, int32, uint32, int8, uint8,
- * int16, uint16, int64, uint64.
- * @li indices: A Tensor of type int32 or int64 . \n
-
- *@par Attributes:
- *axis: A int32 specifying the axis to gather from . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- *@attention Constraints:
-
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator GatherV2.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use GatherV2 instead.
- */
- REG_OP(GatherV2D)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_UINT32, DT_INT8, DT_UINT8,
- DT_INT16, DT_UINT16, DT_INT64, DT_UINT64}))
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_UINT32, DT_INT8, DT_UINT8,
- DT_INT16, DT_UINT16, DT_INT64, DT_UINT64}))
- .REQUIRED_ATTR(axis, Int)
- .OP_END_FACTORY_REG(GatherV2D)
-
- /**
- *@brief Extracts a strided slice of a tensor. Roughly speaking, this op
- extracts a slice of size (end-begin)/stride from the given input tensor.
- Starting at the location specified by begin the slice continues by
- adding stride to the index until all dimensions are not less than end.
-
- *@par Inputs:
- *Four inputs, including:
- * @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8,
- * complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16,
- * complex128, float16, uint32, uint64, complex64, complex128.
- * @li begin: A Tensor of type int32 or int64, for the index of the first value to select . \n
-
- * @li end: A Tensor of type int32 or int64, for the index of the last value to select . \n
-
- * @li strides: A Tensor of type int32 or int64, for the increment . \n
-
- *@par Attributes:
- * @li begin_mask: A Tensor of type int32.
- A bitmask where a bit "i" being "1" means to ignore the begin
- value and instead use the largest interval possible.
- * @li end_mask: A Tensor of type int32.
- Analogous to "begin_mask".
- * @li ellipsis_mask: A Tensor of type int32.
- A bitmask where bit "i" being "1" means the "i"th position
- is actually an ellipsis.
- * @li new_axis_mask: A Tensor of type int32.
- A bitmask where bit "i" being "1" means the "i"th
- specification creates a new shape 1 dimension.
- * @li shrink_axis_mask: A Tensor of type int32.
- A bitmask where bit "i" implies that the "i"th
- specification should shrink the dimensionality . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- *@attention Constraints:
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator StridedSlice.
- */
- REG_OP(StridedSlice)
- .INPUT(x, TensorType::BasicType())
- .INPUT(begin, TensorType::IndexNumberType())
- .INPUT(end, TensorType::IndexNumberType())
- .INPUT(strides, TensorType::IndexNumberType())
- .ATTR(begin_mask, Int, 0)
- .ATTR(end_mask, Int, 0)
- .ATTR(ellipsis_mask, Int, 0)
- .ATTR(new_axis_mask, Int, 0)
- .ATTR(shrink_axis_mask, Int, 0)
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(StridedSlice)
-
- /**
- *@brief Extracts a strided slice of a tensor. Roughly speaking, this op
- extracts a slice of size "(end-begin)/stride" from the given input tensor.
- Starting at the location specified by "begin" the slice continues by
- adding "stride" to the index until all dimensions are not less than "end" . \n
-
- *@par Inputs:
- *x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8,
- * complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16,
- * complex128, float16, uint32, uint64, complex64, complex128 . \n
-
- *@par Attributes:
- * @li begin: A Tensor of type int32 or int64.
- The index of the first value to select.
- * @li end: A Tensor of type int32 or int64.
- The index of the last value to select.
- * @li strides: A Tensor of type int32 or int64, for the increment.
- * @li begin_mask: A Tensor of type int32.
- A bitmask where a bit "i" being "1" means to ignore the begin
- value and instead use the largest interval possible.
- * @li end_mask: Analogous to "begin_mask". A Tensor of type as int32.
- * @li ellipsis_mask: A Tensor of type int32.
- A bitmask where bit "i" being "1" means the "i"th position
- is actually an ellipsis.
- * @li new_axis_mask: A Tensor of type int32.
- A bitmask where bit "i" being "1" means the "i"th
- specification creates a new shape 1 dimension.
- * @li shrink_axis_mask: A Tensor of type int32.
- A bitmask where bit "i" implies that the "i"th
- specification should shrink the dimensionality . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- *@attention Constraints:
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator StridedSlice.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use StridedSlice instead.
- */
- REG_OP(StridedSliceD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_UINT8, DT_INT8,
- DT_BOOL}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_UINT8, DT_INT8,
- DT_BOOL}))
- .REQUIRED_ATTR(begin, ListInt)
- .REQUIRED_ATTR(end, ListInt)
- .REQUIRED_ATTR(strides, ListInt)
- .ATTR(begin_mask, Int, 0)
- .ATTR(end_mask, Int, 0)
- .ATTR(ellipsis_mask, Int, 0)
- .ATTR(new_axis_mask, Int, 0)
- .ATTR(shrink_axis_mask, Int, 0)
- .OP_END_FACTORY_REG(StridedSliceD)
-
- /**
- *@brief Since StridedSlice cuts out pieces of its "input" which is size "dy",
- its gradient will have the same shape (which is passed here as "shape").
- The gradient will be zero in any element that the slice does not select . \n
-
- *@par Inputs:
- *dy: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8,
- * complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16,
- * complex128, float16, uint32, uint64, complex64, complex128 . \n
-
- *@par Attributes:
- * @li shape: A Tensor of type int32 or int64.
- * @li begin: A Tensor of type int32 or int64.
- The index of the first value to select.
- * @li end: A Tensor of type int32 or int64.
- The index of the last value to select.
- * @li strides: A Tensor of type int32 or int64, for the increment.
- * @li begin_mask: A Tensor of type int32.
- A bitmask where a bit "i" being "1" means to ignore the begin
- value and instead use the largest interval possible.
- * @li end_mask: A Tensor of type int32.
- Analogous to "begin_mask".
- * @li ellipsis_mask: A Tensor of type int32.
- A bitmask where bit "i" being "1" means the "i"th position
- is actually an ellipsis.
- * @li new_axis_mask: A Tensor of type int32.
- A bitmask where bit "i" being "1" means the "i"th
- specification creates a new shape 1 dimension.
- * @li shrink_axis_mask: A Tensor of type int32.
- A bitmask where bit "i" implies that the "i"th
- specification should shrink the dimensionality . \n
-
- *@par Outputs:
- *output: A Tensor. Has the same type as "dy" . \n
-
- *@attention Constraints:
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator StridedSliceGradD.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use StridedSliceGrad instead.
- */
- REG_OP(StridedSliceGradD)
- .INPUT(dy, TensorType::BasicType())
- .OUTPUT(output, TensorType::BasicType())
- .REQUIRED_ATTR(shape, ListInt)
- .REQUIRED_ATTR(begin, ListInt)
- .REQUIRED_ATTR(end, ListInt)
- .REQUIRED_ATTR(strides, ListInt)
- .ATTR(begin_mask, Int, 0)
- .ATTR(end_mask, Int, 0)
- .ATTR(ellipsis_mask, Int, 0)
- .ATTR(new_axis_mask, Int, 0)
- .ATTR(shrink_axis_mask, Int, 0)
- .OP_END_FACTORY_REG(StridedSliceGradD)
-
- /**
- *@brief Since StridedSlice cuts out pieces of its "input" which is size "dy",
- its gradient will have the same shape (which is passed here as "shape").
- The gradient will be zero in any element that the slice does not select . \n
-
- *@par Inputs:
- *Five inputs, including:
- * @li shape: A Tensor of type int32 or int64.
- * @li begin: A Tensor of type int32 or int64.
- The index of the first value to select.
- * @li end: A Tensor of type int32 or int64.
- The index of the last value to select.
- * @li strides: A Tensor of type int32 or int64, for the increment.
- * @li dy: A Tensor. Must be one of the following types:
- * float32, float64, int32, uint8, int16, int8,
- * complex64, int64, qint8, quint8, qint32, qint16, quint16, uint16,
- * complex128, float16, uint32, uint64, complex64, complex128 . \n
-
- *@par Attributes:
- * @li begin_mask: A Tensor of type int32.
- A bitmask where a bit "i" being "1" means to ignore the begin
- value and instead use the largest interval possible.
- * @li end_mask: A Tensor of type int32.
- Analogous to "begin_mask".
- * @li ellipsis_mask: A Tensor of type int32.
- A bitmask where bit "i" being "1" means the "i"th position
- is actually an ellipsis.
- * @li new_axis_mask: A Tensor of type int32.
- A bitmask where bit "i" being "1" means the "i"th
- specification creates a new shape 1 dimension.
- * @li shrink_axis_mask: A Tensor of type int32.
- A bitmask where bit "i" implies that the "i"th
- specification should shrink the dimensionality . \n
-
- *@par Outputs:
- *output: A Tensor has the same type as "dy" . \n
-
- *@attention Constraints:
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator StridedSliceGrad.
- */
- REG_OP(StridedSliceGrad)
- .INPUT(shape, TensorType::IndexNumberType())
- .INPUT(begin, TensorType::IndexNumberType())
- .INPUT(end, TensorType::IndexNumberType())
- .INPUT(strides, TensorType::IndexNumberType())
- .INPUT(dy, TensorType::BasicType())
- .OUTPUT(output, TensorType::BasicType())
- .ATTR(begin_mask, Int, 0)
- .ATTR(end_mask, Int, 0)
- .ATTR(ellipsis_mask, Int, 0)
- .ATTR(new_axis_mask, Int, 0)
- .ATTR(shrink_axis_mask, Int, 0)
- .OP_END_FACTORY_REG(StridedSliceGrad)
-
- /**
- *@brief Computes the sum along segments of a tensor . \n
-
- *@par Inputs:
- *Three inputs, including:
- * @li x: A Tensor of type NumberType.
- * @li segment_ids: A Tensor of type IndexNumberType, whose shape is a prefix
- * of "x.shape".
- * @li num_segments: A Tensor of type IndexNumberType . \n
-
- *@par Outputs:
- *y: A Tensor of type NumberType . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator UnsortedSegmentSum.
- */
- REG_OP(UnsortedSegmentSum)
- .INPUT(x, TensorType::NumberType())
- .INPUT(segment_ids, TensorType::IndexNumberType())
- .INPUT(num_segments, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::NumberType())
- .OP_END_FACTORY_REG(UnsortedSegmentSum)
-
- /**
- *@brief Computes the sum along segments of a tensor . \n
-
- *@par Inputs:
- *Two inputs, including:
- * @li x: A Tensor of type float16, float32, int32, int8, uint8.
- * @li segment_ids: A Tensor of type int32, whose shape is a prefix
- * of "x.shape" . \n
-
- *@par Attributes:
- *num_segments: An int32, specifying the number of distinct segment IDs . \n
-
- *@par Outputs:
- *y: A Tensor with same type as "x" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator UnsortedSegmentSum.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use UnsortedSegmentSum instead.
- */
- REG_OP(UnsortedSegmentSumD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8, DT_UINT8}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT8, DT_UINT8}))
- .REQUIRED_ATTR(num_segments, Int)
- .OP_END_FACTORY_REG(UnsortedSegmentSumD)
-
- /**
- *@brief Reverses specific dimensions of a tensor . \n
-
- *@par Inputs:
- * Two inputs, including:
- *@li x: An ND Tensor (up to 8D).
- *Must be one of the following types: int8, uint8, int16, uint16, int32, int64, bool, float16, float32, double, complex64, complex128, string.
- *@li axis: A 1D Tensor.
- *Must be one of the following types: int32, int64
-
- *@par Outputs:
- *y: A Tensor. Has the same type and format as "x"
-
- *@attention Constraints:
- "axis" must be within the rank of "x" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ReverseV2.
- */
- REG_OP(ReverseV2)
- .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
- DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
- DT_COMPLEX64, DT_COMPLEX128, DT_STRING}))
- .INPUT(axis, TensorType({DT_INT32,DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
- DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
- DT_COMPLEX64, DT_COMPLEX128, DT_STRING}))
- .OP_END_FACTORY_REG(ReverseV2)
-
- /**
- *@brief Reverses specific dimensions of a tensor . \n
-
- *@par Inputs:
- * One input:
- *@li x: An ND Tensor (up to 8D).
- * Must be one of the following types: int8, uint8, int16, uint16, int32,
- * int64, bool, float16, float, double, complex64, complex128, string . \n
-
- *@par Attributes:
- *axis: The indices of the dimensions to reverse. Support type: listInt . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type and format as "x"
-
- *@attention Constraints:
- "axis" must be within the rank of "x" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ReverseV2.
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use ReverseV2 instead.
- */
- REG_OP(ReverseV2D)
- .INPUT(x, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
- DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
- DT_COMPLEX64, DT_COMPLEX128, DT_STRING}))
- .OUTPUT(y, TensorType({DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
- DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE,
- DT_COMPLEX64, DT_COMPLEX128, DT_STRING}))
- .REQUIRED_ATTR(axis, ListInt)
- .OP_END_FACTORY_REG(ReverseV2D)
-
- /**
- *@brief: Selects elements from "x1" or "x2", depending on "condition" . \n
-
- *@par Inputs:
- * Three inputs, including:
- * @li condition: A Tensor of type bool.
- * @li x1: A Tensor. Must be one of the following types: float16, float32,
- * int32, int8, uint8, int16, uint16, double, complex64, int64, complex128
- * half, qint8, quint8, qint16, quint16, qint32, quint32, uint32, uint64.
- * format:ND
- * @li x2: A Tensor of the same type as "x1".format:ND
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x1". format:ND
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Select.
- */
- REG_OP(Select)
- .INPUT(condition, TensorType({DT_BOOL}))
- .INPUT(x1,TensorType::BasicType())
- .INPUT(x2,TensorType::BasicType())
- .OUTPUT(y,TensorType::BasicType())
- .OP_END_FACTORY_REG(Select)
-
- /**
- *@brief: SelectV2s elements from "then" or "else", depending on "condition" . \n
-
- *@par Inputs:
- * Three inputs, including:
- * @li condition: A Tensor of type bool.
- * @li then: A Tensor. Must be one of the following types: float16, float32, int32, int8, uint8.
- * @li else: A Tensor of the same type as "then" . \n
-
- *@par Outputs:
- *result: A Tensor. Has the same type as "then" . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator SelectV2.
- */
- REG_OP(SelectV2)
- .INPUT(condition, TensorType({DT_BOOL}))
- .INPUT(then,TensorType::BasicType())
- .INPUT(else,TensorType::BasicType())
- .OUTPUT(result,TensorType::BasicType())
- .OP_END_FACTORY_REG(SelectV2)
-
-
- /**
- *@brief: Computes the maximum along segments of a tensor.
- *Computes a tensor such that output[i]=(data[i]) where max is over j such that segment_ids[j] == i.
- *If the max is empty for a given segment ID i, output[i] = 0
-
- *@par Inputs:
- *Two inputs, include:
- * @li x:A Tensor of type float16, float32, int32,int8,uint8.
- * @li segment_ids:should be the size of the first dimension
- must sorted and need not cover all values in the full range of valid values
- must be positive intege
-
- *@par Outputs:
- *y:A Tensor with same type as "x" . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SegmentMax.
- */
- REG_OP(SegmentMax)
- .INPUT(x, TensorType::RealNumberType())
- .INPUT(segment_ids, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::RealNumberType())
- .OP_END_FACTORY_REG(SegmentMax)
-
- /**
- *@brief: Computes the maximum along segments of a tensor.
- *Computes a tensor such that output[i]=(data[i]) where max is over j
- * such that segment_ids[j] == i.
- *If the max is empty for a given segment ID i, output[i] = 0
-
- *@par Inputs:
- *One inputs, include:
- * @li x:A Tensor of type float16, float, int32. format:ND
-
- *@par Attributes:
- * @li segment_ids:should be the size of the first dimension
- must sorted and need not cover all values in
- the full range of valid values must be positive intege
-
- *@par Outputs:
- *y:A Tensor with same type as "x". format:ND
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator SegmentMax.
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use SegmentMax instead.
- */
- REG_OP(SegmentMaxD)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32}))
- .REQUIRED_ATTR(segment_ids, ListInt)
- .OP_END_FACTORY_REG(SegmentMaxD)
-
- /**
- *@brief Returns a one-hot tensor. The locations represented by index in "x" take value "on_value",
- * while all other locations take value "off_value" . \n
-
- *@par Inputs:
- *Four inputs, including:
- * @li x: A Tensor of indices. Must be one of the following types: int32, uint8, int64.
- * @li depth: A scalar of type int32. The depth of the one hot dimension.
- * @li on_value: A scalar. The value to fill in output when indices[j] = i,
- * Must be one of the following types: float16, float32, int32, int8, uint8.
- * @li off_value: A scalar. The value to fill in output when indices[j] != i,
- * Has the same type as "on_value" . \n
-
- *@par Attributes:
- *axis: An int. The axis to fill. Defaults to "-1" . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "on_value" . \n
-
- *@par Third-party framework compatibility:
- * Compatible with the TensorFlow operator OneHot.
- */
- REG_OP(OneHot)
- .INPUT(x, TensorType({DT_UINT8, DT_INT32, DT_INT64}))
- .INPUT(depth, TensorType({DT_INT32}))
- .INPUT(on_value, TensorType::BasicType())
- .INPUT(off_value, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .ATTR(axis, Int, -1)
- .OP_END_FACTORY_REG(OneHot)
-
- /**
- *@brief Returns a one-hot tensor. The locations represented by index in "x" take value "on_value",
- * while all other locations take value "off_value" . \n
-
- *@par Inputs:
- *Three inputs, including:
- *@li x: A Tensor of indices. Must be one of the following types: int32, uint8, int64.
- *@li on_value: A scalar. The value to fill in output when indices[j] = i,
- * Must be one of the following types: float16, float32, int32, int8, uint8.
- *@li off_value: A scalar. The value to fill in output when indices[j] != i,
- * Has the same type as "on_value" . \n
-
- *@par Attributes:
- *@li depth: A scalar of type int32. The depth of the one hot dimension.
- *@li axis: An int. The axis to fill. Defaults to "-1" . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "on_value" . \n
-
- *@par Third-party framework compatibility:
- * Compatible with the TensorFlow operator OneHot.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use OneHot instead.
- */
- REG_OP(OneHotD)
- .INPUT(x, TensorType({DT_UINT8, DT_INT32}))
- .INPUT(on_value, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT8,
- DT_INT8}))
- .INPUT(off_value, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT8,
- DT_INT8}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_UINT8, DT_INT8}))
- .REQUIRED_ATTR(depth, Int)
- .ATTR(axis, Int, -1)
- .OP_END_FACTORY_REG(OneHotD)
-
- /**
- *@brief Extracts a slice from a tensor.
- * This operation extracts a slice of size "size" from a tensor "x"
- * starting at the location specified by "begin" . \n
-
- *@par Inputs:
- *@li x: A Tensor. Must be one of the following types:
- * float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8,
- * int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32.
- *@li offsets: A Tensor of type int32 or int64. The starting location for the slice.
- *@li size: A Tensor of type int32 or int64. The tensor shape . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x". The slice extracted from the tensor . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator Slice.
- */
- REG_OP(Slice)
- .INPUT(x, TensorType::BasicType())
- .INPUT(offsets, TensorType::IndexNumberType())
- .INPUT(size, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(Slice)
-
- /**
- *@brief Extracts a slice from a tensor.
- * This operation extracts a slice of size "size" from a tensor "x"
- * starting at the location specified by "begin" . \n
-
- *@par Inputs:
- *@li x: A Tensor. Must be one of the following types:
- * float16, float32, double, int64, int32, uint8, uint16, uint32, uint64, int8,
- * int16, complex64, complex128, qint8, quint8, qint16, quint16, qint32 . \n
-
- *@par Attributes:
- *@li offsets: The starting location for the slice.
- *@li size: The tensor shape . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x". The slice extracted from the tensor.
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use Slice instead.
- */
- REG_OP(SliceD)
- .INPUT(x, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .REQUIRED_ATTR(offsets, ListInt)
- .REQUIRED_ATTR(size, ListInt)
- .OP_END_FACTORY_REG(SliceD)
-
- /**
- * @brief Finds values and indices of the "k" largest elements for the last
- * dimension . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A 1D or higher tensor of type float16, with the last dimension at
- * least "k".
- * Specifies the data to sort.
- * @li assist_seq: A 1D tensor of type float16.
- * with size of 2N, which "N" is the last dimension.
- * The first N numbers is indices, and the next N numbers is deviation of casting
- * int32 to float16. \n
-
- * @par Attributes:
- * @li k: A required int that is at least 0, specifying the number of top elements
- * to look for along the last dimension (along each row for matrices).
- * @li sorted: An optional bool. Defaults to true.
- * If true, the resulting "k" elements will be sorted by the values in descending
- * order.
- * @li dim: An optional int. Defaults to -1. For reserved use.
- * @li largest: An optional bool. Defaults to true. For reserved use. \n
-
- * @par Outputs:
- * @li values: A Tensor, specifying the sorted data. Has the same type as "input".
- * @li indices: A Tensor of type int32, specifying the indices of sorted data . \n
-
- * @attention Constraints:
- * @li k =< 5120
- * @li Size of the last dimension =< 1458176
- * @li sorted = true
- * @li It's unstable sorted indices on the platform of Ascend310
-
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator TopK.
- */
- REG_OP(TopKD)
- .INPUT(x, TensorType::RealNumberType())
- .INPUT(assist_seq, TensorType({DT_FLOAT16}))
- .OUTPUT(values, TensorType::RealNumberType())
- .OUTPUT(indices, TensorType({DT_INT32}))
- .REQUIRED_ATTR(k, Int)
- .ATTR(sorted, Bool, true)
- .ATTR(dim, Int, -1)
- .ATTR(largest, Bool, true)
- .OP_END_FACTORY_REG(TopKD)
-
- /**
- * @brief Finds values and indices of the "k" largest elements for the last
- * dimension . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A 1D or higher tensor of type BasicType, with the last dimension
- * at least "k".
- * @li k: A 0D Tensor of type int32.
- * Number of top elements to look for along the last dimension (along each row
- * for matrices) . \n
-
- * @par Attributes:
- * @li sorted: An optional bool. Defaults to true.
- * If true, the resulting "k" elements will be sorted by the values in descending
- * order.
- * @li T: Indicator of indices type . \n
-
- * @par Outputs:
- * @li values: A Tensor, specifying the sorted data. Has the same type as
- * "input".
- * @li indices: A Tensor of type int32, specifying the indices of sorted data . \n
-
- * @see TopK()
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator TopKV2.
- */
- REG_OP(TopK)
- .INPUT(x, TensorType::RealNumberType())
- .INPUT(k, TensorType({DT_INT32}))
- .OUTPUT(values, TensorType::RealNumberType())
- .OUTPUT(indices, TensorType({DT_INT32}))
- .ATTR(sorted, Bool, true)
- .OP_END_FACTORY_REG(TopK)
- /**
- *@brief Creates a new tensor by applying sparse "updates" to individual values or slices within a tensor (initially zero for numeric, empty for string) of the given "shape" according to "indices" . \n
-
- *@par Inputs:
- *Inputs including:
- * @li indices: A required index tensor. Must be one of the following types: float32, float16, int32, int8, uint8.
- * @li x: A required slice tensor. Must be one of the following types: float32, float16, int32, int8, uint8.
- * @li shape: A required list of int32, specifying the output shape.
- *@par Outputs:
- *y:A output Tensor with same datatype as "updates" . \n
-
- *@attention Constraints:
- *@li "y" has the same shape as "shape".
- *@li "y" has the same type as "x".
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterNd.
- */
- REG_OP(ScatterNd)
- .INPUT(indices, TensorType::BasicType())
- .INPUT(x, TensorType::BasicType())
- .INPUT(shape, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(ScatterNd)
- /**
- *@brief Creates a new tensor by applying sparse "updates" to individual values
- * or slices within a tensor (initially zero for numeric, empty for string) of
- * the given "shape" according to "indices" . \n
-
- *@par Inputs:
- *Inputs including:
- * @li indices: A required index tensor. Must be one of the following types:
- * float, float16, int32, int16. format:ND.
- * @li x: A required slice tensor. Must be one of the following types:
- * float, float16, int32, int16. format:ND.
- *@par Attributes:
- * @li shape: A required list of int32, specifying the output shape.
- *@par Outputs:
- *y: A Tensor. Has the same type as "x". format:ND . \n
-
- *@attention Constraints:
- *@li "y" has the same shape as "shape".
- *@li "y" has the same type as "x".
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator ScatterNd.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use ScatterNd instead.
- */
- REG_OP(ScatterNdD)
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16}))
- .REQUIRED_ATTR(shape, ListInt)
- .OP_END_FACTORY_REG(ScatterNdD)
-
- /**
- * @brief Says whether the targets are in the top "k" predictions . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x1: A 2D Tensor of type float32. A "batch_size * classes" tensor.
- * @li x2: A 1D Tensor of type int32. A batch_size tensor of class ids . \n
-
- * @par Attributes:
- * @li k: A required IndexNumberType, specifying the number of top elements to
- * look at for computing precision . \n
-
- * @par Outputs:
- * y: A Tensor of type bool . \n
-
- * @attention Constraints:
- * @li x2 must be non-negative tensor.
-
- * @see InTopK()
-
- * @par Third-party framework compatibility
- * Compatible with the TensorFlow operator InTopK.
- *
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use InTopK instead.
- */
- REG_OP(InTopKD)
- .INPUT(x1, TensorType({DT_FLOAT}))
- .INPUT(x2, TensorType({IndexNumberType}))
- .OUTPUT(y, TensorType({DT_BOOL}))
- .REQUIRED_ATTR(k, Int)
- .OP_END_FACTORY_REG(InTopKD)
-
- /**
- * @brief Says whether the targets are in the top "k" predictions . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x1: A 2D Tensor of type float32. A "batch_size * classes" tensor.
- * @li x2: A 1D Tensor of type IndexNumberType. A batch_size tensor of class ids.
- * @li k: A 1D Tensor of the same type as "x2".
- * Specifies the number of top elements to look at for computing precision . \n
-
- * @par Outputs:
- * y: A Tensor of type bool . \n
-
- * @attention Constraints:
- * @li x2 must be non-negative tensor.
-
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator InTopKV2.
- */
- REG_OP(InTopK)
- .INPUT(x1, TensorType({DT_FLOAT}))
- .INPUT(x2, TensorType(IndexNumberType))
- .INPUT(k, TensorType({IndexNumberType}))
- .OUTPUT(y, TensorType({DT_BOOL}))
- .OP_END_FACTORY_REG(InTopK)
-
- /**
- * @brief Assigns "value" to the sliced l-value reference of "var".
- * The values of "value" are assigned to the positions in the variable. "var"
- * that are selected by the slice parameters. The slice parameters "begin, "end",
- * "strides", etc. work exactly as in "StridedSlice" . \n
-
- * @par Inputs:
- * Five inputs, including:
- * @li var: A mutable ND Tensor of type BasicType.
- * @li begin: A mutable ND Tensor of type IndexNumberType.
- * Specifies the index of the first value to select.
- * @li end: A mutable ND Tensor of type IndexNumberType.
- * Specifies the index of the last value to select.
- * @li strides: A mutable ND Tensor of type IndexNumberType.
- * Specifies the stride to select.
- * @li input_value: A mutable ND Tensor of type BasicType . \n
-
- * @par Attributes:
- * @li begin_mask: An optional int. Defaults to "0".
- * @li end_mask: An optional int. Defaults to "0".
- * @li ellipsis_mask: An optional int. Defaults to "0".
- * @li new_axis_mask: An optional int. Defaults to "0".
- * @li shrink_axis_mask: An optional int. Defaults to "0" . \n
-
- * @par Outputs:
- * var: A mutable Tensor. Has the same type as "var" . \n
-
- * @attention Constraints:
- * This operator currently does not support broadcasting. Therefore, the shape
- * of "value" must be exactly the shape produced by the slice of "var" . \n
-
- * @see StridedSlice()
-
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator StridedSlice.
- */
- REG_OP(StridedSliceAssign)
- .INPUT(var, TensorType(BasicType))
- .INPUT(begin, TensorType(IndexNumberType))
- .INPUT(end, TensorType(IndexNumberType))
- .INPUT(strides, TensorType(IndexNumberType))
- .INPUT(input_value, TensorType(BasicType))
- .OUTPUT(var, TensorType(BasicType))
- .ATTR(begin_mask, Int, 0)
- .ATTR(end_mask, Int, 0)
- .ATTR(ellipsis_mask, Int, 0)
- .ATTR(new_axis_mask, Int, 0)
- .ATTR(shrink_axis_mask, Int, 0)
- .OP_END_FACTORY_REG(StridedSliceAssign)
-
- /**
- * @brief Assigns "value" to the sliced l-value reference of "var".
- * The values of "value" are assigned to the positions in the variable. "var"
- * that are selected by the slice parameters. The slice parameters "begin, "end",
- * "strides", etc. work exactly as in "StridedSlice" . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li var: A mutable ND Tensor of the following types:int32, int16, float16, float32.
- * @li input_value: A mutable ND "Tensor" of the following types:int32, int16, float16, float32 . \n
-
- * @par Attributes:
- * @li begin: A required list of ints.
- * Specifies the index of the first value to select.
- * @li end: A required list of ints.
- * Specifies the index of the last value to select.
- * @li strides: A required list of ints. Specifies the stride to select.
- * @li begin_mask: An optional int. Defaults to "0".
- * @li end_mask: An optional int. Defaults to "0".
- * @li ellipsis_mask: An optional int. Defaults to "0".
- * @li new_axis_mask: An optional int. Defaults to "0".
- * @li shrink_axis_mask: An optional int. Defaults to "0" . \n
-
- * @par Outputs:
- * var: A mutable Tensor. Has the same type as input "var" . \n
-
- * @attention Constraints:
- * This operator currently does not support broadcasting. Therefore, the shape of
- * "value" shape must be exactly the shape produced by the slice of "var" . \n
-
- * @see StridedSlice()
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use StridedSliceAssign instead.
- */
- REG_OP(StridedSliceAssignD)
- .INPUT(var, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16}))
- .INPUT(input_value, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16}))
- .OUTPUT(var, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT32, DT_INT16}))
- .REQUIRED_ATTR(begin, ListInt)
- .REQUIRED_ATTR(end, ListInt)
- .REQUIRED_ATTR(strides, ListInt)
- .ATTR(begin_mask, Int, 0)
- .ATTR(end_mask, Int, 0)
- .ATTR(ellipsis_mask, Int, 0)
- .ATTR(new_axis_mask, Int, 0)
- .ATTR(shrink_axis_mask, Int, 0)
- .OP_END_FACTORY_REG(StridedSliceAssignD)
-
- /**
- *@brief Gather slices from "params" according to "indices"."indices" must be
- an integer tensor of any dimension(usually 0-D or 1-D).
- Produces an output tensor with shape "indices.shape + params.shape[1:]" . \n
-
- *@par Inputs:
- *Two inputs, including:
- * @li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8,
- * int64, qint8, quint8, qint32, qint16, quint16, uint16,
- * float16, uint32, uint64, complex64, complex128.
- * @li indices: A Tensor of type int32 or int64 . \n
-
- *@par Attributes:
- *validate_indices: A bool specifying whether to verify the argument of "indice" . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x" . \n
-
- *@attention Constraints:
- * "indices" is in the range [0, x.shape[0]) . \n
-
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Gather . \n
-
- */
- REG_OP(Gather)
- .INPUT(x, TensorType::BasicType())
- .INPUT(indices, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::BasicType())
- .ATTR(validate_indices, Bool, true)
- .OP_END_FACTORY_REG(Gather)
-
- /**
- *@brief Computes the cumulative product of the tensor "x" along "axis" . \n
-
- *@par Inputs:
- * Two inputs, including:
- *@li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8,
- * complex64, int64, qint8, quint8, qint32, uint16, complex128, float16, uint32, uint64
- *@li axis A Tensor of type int32 or int64. Range is [-rank(x),rank(x)). Defaults to "0".
- *
- *@par Attributes:
- *@li exclusive: If "False", performs inclusive cumprod, which means that the first element of the input
- * is identical to the first element of the output. If "True", performs exclusive cumprod.
- *@li reverse: A bool. Defaults to "False".
- *
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Cumprod.
- */
- REG_OP(Cumprod)
- .INPUT(x, TensorType::NumberType())
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::NumberType())
- .ATTR(exclusive, Bool, false)
- .ATTR(reverse, Bool, false)
- .OP_END_FACTORY_REG(Cumprod)
-
- /**
- *@brief Computes the cumulative product of the tensor "x" along "axis" . \n
-
- *@par Inputs:
- * One input:
- *x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8,
- * complex64, int64, qint8, quint8, qint32, uint16, complex128, float16, uint32, uint64
- *
- *@par Attributes:
- *@li axis A Tensor of type int32 or int64. Range is [-rank(x),rank(x)). Defaults to "0".
- *@li exclusive: If "False", performs inclusive cumprod, which means that the first element of the input
- * is identical to the first element of the output. If "True", performs exclusive cumprod.
- *@li reverse: A bool. Defaults to "False".
- *
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Cumprod.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use Cumprod instead.
- */
- REG_OP(CumprodD)
- .INPUT(x, TensorType::NumberType())
- .OUTPUT(y, TensorType::NumberType())
- .REQUIRED_ATTR(axis, Int)
- .ATTR(exclusive, Bool, false)
- .ATTR(reverse, Bool, false)
- .OP_END_FACTORY_REG(CumprodD)
-
- /**
- *@brief Computes the cumulative sum of the tensor "x" along "axis" . \n
-
- *@par Inputs:
- * Two inputs, including:
- *@li x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8,
- * complex64, int64, qint8, quint8, qint32, uint16, complex128, float16, uint32, uint64.
- *@li axis A Tensor of type int32 or int64. Range is [-rank(x),rank(x)). Defaults to "0".
- *
- *@par Attributes:
- *@li exclusive: If "False", performs inclusive cumsum, which means that the first element of the input is
- * identical to the first element of the output. If "True", performs exclusive cumsum.
- *@li reverse: A bool. Defaults to "False".
- *
- *@par Outputs:
- *@li y: A Tensor. Has the same type as "x".
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Cumsum.
- */
- REG_OP(Cumsum)
- .INPUT(x, TensorType::NumberType())
- .INPUT(axis, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::NumberType())
- .ATTR(exclusive, Bool, false)
- .ATTR(reverse, Bool, false)
- .OP_END_FACTORY_REG(Cumsum)
-
- /**
- *@brief Computes the cumulative sum of the tensor "x" along "axis".
- *
- *@par Inputs:
- * One input:
- *x: A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8,
- * complex64, int64, qint8, quint8, qint32, uint16, complex128, float16, uint32, uint64.
- *
- *@par Attributes:
- *@li axis A Tensor of type int32 or int64. Range is [-rank(x),rank(x)). Defaults to "0".
- *@li exclusive: If "False", performs inclusive cumsum, which means that the first element of the input is
- * identical to the first element of the output. If "True", performs exclusive cumsum.
- *@li reverse: A bool. Defaults to "False".
- *
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Cumsum.
-
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use Cumsum instead.
- */
- REG_OP(CumsumD)
- .INPUT(x, TensorType::NumberType())
- .OUTPUT(y, TensorType::NumberType())
- .REQUIRED_ATTR(axis, Int)
- .ATTR(exclusive, Bool, false)
- .ATTR(reverse, Bool, false)
- .OP_END_FACTORY_REG(CumsumD)
-
- /**
- *@brief Updates specified rows with values in v.
- *Computes x[i, :] = v; return x.
- *@par Inputs:
- *Three inputs, including:
- * @li x: A Tensor.
- * TensorType::NumberType().
- * @li indices: A vector of type int32.
- * Indices into the left-most dimension of "x".
- * @li v: A Tensor of the same type as "x".
- * Same dimension sizes as x except the first dimension,
- * which must be the same as the size of "indices" . \n
-
- *@par Outputs:
- *y: A Tensor of the same type as "x".
- * An alias of "x". The content of "y" is undefined if there are duplicates in indices.
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator InplaceUpdate.
- */
- REG_OP(InplaceUpdate)
- .INPUT(x, TensorType::BasicType())
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(v, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(InplaceUpdate)
-
- /**
- *@brief Updates specified rows with values in v.
- *Computes x[i, :] = v; return x.
- *@par Inputs:
- *Two inputs, including:
- * @li x: A Tensor of type int32, float16, floay32.
- * @li v: A Tensor of the same type as "x".
- * Same dimension sizes as "x" except the first dimension, which must be the same as the size of "indices" . \n
-
- *@par Attributes:
- *indices: A required list of ints. Indices into the left-most dimension of "x" . \n
-
- *@par Outputs:
- *y: A Tensor of the same type as "x".
- * An alias of "x". The content of "y" is undefined if there are duplicates in indices . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator InplaceUpdate.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use InplaceUpdate instead.
- */
- REG_OP(InplaceUpdateD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .INPUT(v, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .REQUIRED_ATTR(indices, ListInt)
- .OP_END_FACTORY_REG(InplaceUpdateD)
-
- /**
- *@brief Adds "v" into specified rows of "x".
- *Computes y = x; y[i, :] += v.
- *@par Inputs:
- *Three inputs, including:
- * @li x: A Tensor.
- * TensorType::NumberType().
- * @li indices: A vector of type int32.
- * Indices into the left-most dimension of "x".
- * @li v: A Tensor of the same type as "x".
- * Same dimension sizes as x except the first dimension,
- * which must be the same as the size of "indices" . \n
-
- *@par Outputs:
- *y: A Tensor of the same type as "x".
- * An alias of "x". The content of "y" is undefined if there are duplicates in indices.
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator InplaceAdd.
- */
- REG_OP(InplaceAdd)
- .INPUT(x, TensorType::BasicType())
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(v, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(InplaceAdd)
-
- /**
- *@brief Adds "v" into specified rows of "x".
- *Computes y = x; y[i, :] += v.
- *@par Inputs:
- *Two inputs, including:
- * @li x: A Tensor of type is int32, float16, float32.
- * @li v: A Tensor of the same type as "x".
- * Same dimension sizes as "x" except the first dimension, which must be the same as the size of "indices" . \n
-
- *@par Attributes:
- *indices: A required list of ints. Indices into the left-most dimension of "x" . \n
-
- *@par Outputs:
- *y: A Tensor of the same type as "x".
- * An alias of "x". The content of "y" is undefined if there are duplicates in indices . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator InplaceAdd.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use InplaceAdd instead.
- */
- REG_OP(InplaceAddD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .INPUT(v, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .REQUIRED_ATTR(indices, ListInt)
- .OP_END_FACTORY_REG(InplaceAddD)
-
- /**
- *@brief Subtracts "v" into specified rows of "x".
- *Computes y = x; y[i, :] -= v; return y.
- *@par Inputs:
- **Three inputs, including:
- * @li x: A Tensor. TensorType::NumberType().
- * @li indices: A vector of type int32. Indices into the left-most dimension of x.
- * @li v: A Tensor of the same type as "x".
- * Same dimension sizes as "x" except the first dimension, which must be the same as the size of "indices" . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- * An alias of "x". The content of "y" is undefined if there are duplicates in indices . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator InplaceSub.
- */
- REG_OP(InplaceSub)
- .INPUT(x, TensorType::BasicType())
- .INPUT(indices, TensorType({DT_INT32}))
- .INPUT(v, TensorType::BasicType())
- .OUTPUT(y, TensorType::BasicType())
- .OP_END_FACTORY_REG(InplaceSub)
-
- /**
- *@brief Subtracts "v" into specified rows of "x".
- *Computes y = x; y[i, :] -= v . \n
-
- *@par Inputs:
- **Two inputs, including:
- * @li x: A Tensor of type is int32, float16, float32.
- * @li v: A Tensor of the same type as "x".
- * Same dimension sizes as "x" except the first dimension, which must be the same as the size of "indices" . \n
-
- *@par Attributes:
- *indices: A required list of ints. Indices into the left-most dimension of "x" . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- * An alias of x. The content of y is undefined if there are duplicates in indices . \n
-
- *@par Third-party framework compatibility
- *Compatible with the TensorFlow operator InplaceSub.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use InplaceSub instead.
- */
- REG_OP(InplaceSubD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .INPUT(v, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32}))
- .REQUIRED_ATTR(indices, ListInt)
- .OP_END_FACTORY_REG(InplaceSubD)
-
- /**
- * @brief Applies sparse addition to input "x" using individual values or slices
- * from "updates" according to "indices". The updates are non-aliasing: "x" is
- * only modified in-place if no other operations will use it. Otherwise, a copy
- * of "x" is made. This operation has a gradient with respect to both "x" and
- * "updates" . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x: A Tensor of type NumberType. A batch_size x classes tensor.
- * @li indices: A Tensor of type IndexNumberType. Specifies the indices into "x".
- * @li updates: A Tensor. Must have the same type as "x".
- * Specifies the updated values to add to "x" . \n
-
- * @par Outputs:
- * y: A Tensor with the same shape as "x", containing values of "x" updated with
- * "updates" . \n
-
- * @see ScatterNd(),ScatterNdAdd()
-
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator ScatterNDNonAliasingAdd.
- */
- REG_OP(ScatterNonAliasingAdd)
- .INPUT(x, TensorType::NumberType())
- .INPUT(indices, TensorType::IndexNumberType())
- .INPUT(updates, TensorType::NumberType())
- .OUTPUT(y, TensorType::NumberType())
- .OP_END_FACTORY_REG(ScatterNonAliasingAdd)
-
- /**
- * @brief Computes the minimum along segments of a tensor . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x: A Tensor of type RealNumberType.
- * @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix
- * of "x.shape".
- * @li num_segments: A Tensor of type IndexNumberType . \n
-
- * @par Outputs:
- * y: A Tensor of type RealNumberType . \n
-
- * @attention Constraints:
- * @li segment_ids must be non-negative tensor.
-
- * @see UnsortedSegmentSum(), UnsortedSegmentProd(),
-
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator UnsortedSegmentMin.
- */
- REG_OP(UnsortedSegmentMin)
- .INPUT(x, TensorType::RealNumberType())
- .INPUT(segment_ids, TensorType::IndexNumberType())
- .INPUT(num_segments, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::RealNumberType())
- .OP_END_FACTORY_REG(UnsortedSegmentMin)
-
- /**
- * @brief Computes the minimum along segments of a tensor . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A Tensor of the following types:int32, int16, float16, float32.
- * @li segment_ids: A 1D Tensor of type int32, whose shape is a prefix
- * of "x.shape" . \n
-
- * @par Attributes:
- * num_segments: A required int32, specifying the number of distinct segment IDs . \n
-
- * @par Outputs:
- * y: A Tensor.Must have the same type as input "x" . \n
-
- * @attention Constraints:
- * @li segment_ids must be non-negative tensor.
-
- * @see UnsortedSegmentProdD(), UnsortedSegmentSumD(),
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use UnsortedSegmentMin instead.
- */
- REG_OP(UnsortedSegmentMinD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT16}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT16}))
- .REQUIRED_ATTR(num_segments, Int)
- .OP_END_FACTORY_REG(UnsortedSegmentMinD)
-
- /**
- * @brief Computes the maximum along segments of a tensor . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x: A Tensor of type RealNumberType.
- * @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix
- * of "x.shape".
- * @li num_segments: A Tensor of type IndexNumberType . \n
-
- * @par Outputs:
- * y: A Tensor of type RealNumberType . \n
-
- * @attention Constraints:
- * @li segment_ids must be non-negative tensor.
-
- * @see UnsortedSegmentSum(), UnsortedSegmentProd(),
-
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator UnsortedSegmentMax.
- */
- REG_OP(UnsortedSegmentMax)
- .INPUT(x, TensorType::RealNumberType())
- .INPUT(segment_ids, TensorType::IndexNumberType())
- .INPUT(num_segments, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::RealNumberType())
- .OP_END_FACTORY_REG(UnsortedSegmentMax)
-
- /**
- * @brief Computes the maximum along segments of a tensor . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A Tensor of the following types:int32, int16, float16, float32.
- * @li segment_ids: A 1D Tensor of type int32, whose shape is a prefix
- * of "x.shape" . \n
-
- * @par Attributes:
- * num_segments: A required int32, specifying the number of distinct segment IDs . \n
-
- * @par Outputs:
- * y: A Tensor.Must have the same type as input "x" . \n
-
- * @attention Constraints:
- * @li segment_ids must be non-negative tensor.
-
- * @see UnsortedSegmentProdD(),
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use UnsortedSegmentMax instead.
- */
- REG_OP(UnsortedSegmentMaxD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT16}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT16}))
- .REQUIRED_ATTR(num_segments, Int)
- .OP_END_FACTORY_REG(UnsortedSegmentMaxD)
- /**
- * @brief Computes the product along segments of a tensor . \n
-
- * @par Inputs:
- * Three inputs, including:
- * @li x: A Tensor of type NumberType.
- * @li segment_ids: A 1D Tensor of type IndexNumberType, whose shape is a prefix
- * of "x.shape".
- * @li num_segments: A Tensor of type IndexNumberType . \n
-
- * @par Outputs:
- * y: A Tensor of type NumberType . \n
-
- * @attention Constraints:
- * @li segment_ids must be non-negative tensor.
-
- * @see UnsortedSegmentSum(), UnsortedSegmentMin(),
-
- * @par Third-party framework compatibility
- * @li Compatible with the TensorFlow operator UnsortedSegmentProd.
- */
- REG_OP(UnsortedSegmentProd)
- .INPUT(x, TensorType::NumberType())
- .INPUT(segment_ids, TensorType::IndexNumberType())
- .INPUT(num_segments, TensorType::IndexNumberType())
- .OUTPUT(y, TensorType::NumberType())
- .OP_END_FACTORY_REG(UnsortedSegmentProd)
-
- /**
- * @brief Computes the product along segments of a tensor . \n
-
- * @par Inputs:
- * Two inputs, including:
- * @li x: A Tensor of the following types:int32, int16, float16, float32.
- * @li segment_ids: A 1D Tensor of type int32, whose shape is a prefix
- * of "x.shape" . \n
-
- * @par Attributes:
- * num_segments: An int32, specifying the number of distinct segment IDs . \n
-
- * @par Outputs:
- * y: A Tensor.Must have the same type as input "x" . \n
-
- * @attention Constraints:
- * @li segment_ids must be non-negative tensor.
-
- * @see UnsortedSegmentMinD()
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use UnsortedSegmentProd instead.
- */
- REG_OP(UnsortedSegmentProdD)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT16}))
- .INPUT(segment_ids, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT32, DT_INT16}))
- .REQUIRED_ATTR(num_segments, Int)
- .OP_END_FACTORY_REG(UnsortedSegmentProdD)
-
- /**
- *@brief Performs object detection . \n
-
- *@par Inputs:
- *@li cls_prob: An NCHW tensor of type float16 or float32, specifying the probability of the proposal is the background class.
- *@li bbox_delta: An NCHW tensor of type float16 or float32, specifying the coordinates of the proposals bounding boxes.
- *@li im_info: An ND tensor of type float16 or float32, specifying the Image information . \n
-
- *@par Attributes:
- *@li feat_stride: A optional float32, specifying the stride of the sliding window. Must be greater than "0".Defaults to "16".
- *@li base_size: A optional float32, specifying the size of the generated base box. Must be greater than "0". Defaults to "16".
- *@li min_size: A optional float32, specifying the minimum edge length of a proposal. A box with any edge less than this value is removed. Must be greater than "0". Defaults to "16".
- *@li ratio: A optional list of floats, specifying the aspect ratio of the generated base box. Defaults to [0.5, 1, 2].
- *@li scale: A optional list of floats, specifying the ratio of the size of the generated base box to "base_size". Defaults to [8, 16, 32].
- *@li pre_nms_topn: A required int, specifying top K boxes before NMS. For float16 input, pre_nms_topn <= 6000. For float32 input, pre_nms_topn <= 3000. Defaults to "3000".
- *@li post_nms_topn: A required int, specifying the number of boxes to be output after NMS. The value is a multiple of 16. For float16 input, post_nms_topn <= 6000. For float32 input, post_nms_topn <= 3000 (the maximum multiple of 16 is 2992 within the range). Defaults to "304".
- *@li iou_threshold: A required float32, specifying the NMS threshold. The value range is (0,1]. Defaults to "0.7".
- *@li output_actual_rois_num: An optional bool. Defaults to "false" . \n
-
- *@par Outputs:
- *@li rois: A Tensor with shape [batch, 5, post_nms_topn], of type float16 or float32, specifying the output box information. "post_nms_topn" must be a multiple of 16. The dimension "5" indicates (batchID, x1, y1, x2, y2). The number of BBoxes output per batch is determined by "actual_rois_num".
- *@li actual_rois_num: A Tensor with shape [batch, 8], of type int32, specifying the number of BBoxes output per batch.
- *@par Third-party framework compatibility
- * It is a custom operator. It has no corresponding operator in Caffe.
- */
- REG_OP(Proposal)
- .INPUT(cls_prob, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(bbox_delta, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(im_info, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(actual_rois_num, TensorType({DT_INT32}))
- .ATTR(feat_stride, Float, 16)
- .ATTR(base_size, Float, 16)
- .ATTR(min_size, Float, 16)
- .ATTR(ratio, ListFloat, {0.5, 1, 2})
- .ATTR(scale, ListFloat, {8, 16, 32})
- .ATTR(pre_nms_topn, Int, 3000)
- .ATTR(post_nms_topn, Int, 304)
- .ATTR(iou_threshold, Float, 0.7)
- .ATTR(output_actual_rois_num, Bool, false)
- .OP_END_FACTORY_REG(Proposal)
-
- /**
- *@brief Performs object detection. Different from Proposal, this is an internal API called after FE fusion and has an additional "rpn_bbox" attribute. The suffix "D" in the API name will be removed from the generated model . \n
-
- *@par Inputs:
- *@li cls_prob: An NCHW tensor of type float16, specifying the probability of the proposal is the background class.
- *@li bbox_delta: An NCHW tensor of type float16, specifying the coordinates of the proposals bounding boxes.
- *@li im_info: An ND tensor of type float16 or float32, specifying the Image information.
- *@li rpn_bbox: An NCHW tensor of type float16, specifying the coordinates of the proposals bounding boxes . \n
-
- *@par Attributes:
- *@li feat_stride: A required float32, specifying the stride of the sliding window. Must be greater than "0".Defaults to "16".
- *@li base_size: A required float32, specifying the size of the generated base box. Must be greater than "0". Defaults to "16".
- *@li min_size: A required float32, specifying the minimum edge length of a proposal. A box with any edge less than this value is removed. Must be greater than "0". Defaults to "16".
- *@li ratio: A required list of floats, specifying the aspect ratio of the generated base box. Defaults to [0.5, 1, 2].
- *@li scale: A required list of floats, specifying the ratio of the size of the generated base box to "base_size". Defaults to [8, 16, 32].
- *@li pre_nms_topn: A required int, specifying top K boxes before NMS. For float16 input, pre_nms_topn <= 6000. For float32 input, pre_nms_topn <= 3000. Defaults to "3000".
- *@li post_nms_topn: A required int, specifying the number of boxes to be output after NMS. The value is a multiple of 16. For float16 input, post_nms_topn <= 6000. For float32 input, post_nms_topn <= 3000 (the maximum multiple of 16 is 2992 within the range). Defaults to "304".
- *@li iou_threshold: A required float32, specifying the NMS threshold. The value range is (0,1]. Defaults to 0.7.
- *@li output_actual_rois_num: An optional bool. Defaults to "false" . \n
-
- *@par Outputs:
- *@li rois: A Tensor with shape [batch, 5, post_nms_topn], of type float16 or float32, specifying the output box information. "post_nms_topn" must be a multiple of 16. The dimension "5" indicates (batchID, x1, y1, x2, y2). The number of BBoxes output per batch is determined by "actual_rois_num".
- *@li actual_rois_num: A Tensor with shape [batch, 8], of type int32, specifying the number of BBoxes output per batch.
- *@par Third-party framework compatibility
- * It is a custom operator. It has no corresponding operator in Caffe.
- *@par Restrictions:
- *Warning: THIS FUNCTION IS DEPRECATED. Please use Proposal instead.
- */
- REG_OP(ProposalD)
- .INPUT(cls_prob, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(bbox_delta, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(im_info, TensorType({DT_FLOAT16, DT_FLOAT}))
- .INPUT(rpn_bbox, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(rois, TensorType({DT_FLOAT16, DT_FLOAT}))
- .OUTPUT(actual_rois_num, TensorType({DT_INT32}))
- .ATTR(feat_stride, Float, 16)
- .ATTR(base_size, Float, 16)
- .ATTR(min_size, Float, 16)
- .ATTR(ratio, ListFloat, {0.5, 1, 2})
- .ATTR(scale, ListFloat, {8, 16, 32})
- .ATTR(pre_nms_topn, Int, 3000)
- .ATTR(post_nms_topn, Int, 304)
- .ATTR(iou_threshold, Float, 0.7)
- .ATTR(output_actual_rois_num, Bool, false)
- .OP_END_FACTORY_REG(ProposalD)
-
- /**
- *@brief Performs plane or channel conversion on YoloV2.
- * If reverse=true: (N, H, W, C)->(N, H*stride, W*stride, C/(stride*stride))
- * If reverse=false: (N, H, W, C)->(N, H/stride, W/stride, C*(stride*stride))
-
- *@par Inputs:
- *x: An (N, H, W, C) tensor. Type is float16, float32, int8, uint8, int16, uint16, int32, uint32, int64 or uint64. . \n
-
- *@par Attributes:
- *@li stride: An optional int32, specifying the plane or channel scaling factor. Defaults to "2".
- *@li reverse: An optional bool, specifying the conversion mode. If "true", depth to space conversion is performed. If "false", space to depth conversion is performed. Defaults to "false" . \n
-
- *@par Outputs:
- *y: An (N, H, W, C) tensor. Has same type as "x" . \n
-
- *@attention Constraints:
- *@li If reverse=true: C/(stride*stride) yields an integer result. If reverse=false: W/stride and H/stride yield integer results.
- *@par Third-party framework compatibility
- * It is a custom operator. It has no corresponding operator in Caffe.
- */
- REG_OP(PassThrough)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32, DT_INT64, DT_UINT64}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32, DT_INT64, DT_UINT64}))
- .ATTR(stride, Int, 2)
- .ATTR(reverse, Bool, false)
- .OP_END_FACTORY_REG(PassThrough)
-
- /**
- *@brief Crops the input tensor x to the shape of size. For example:
- *(1) x: bottom to be cropped, with shape (20, 50, 512, 512);
- *(2) size: reference input for cropping, with shape (20, 10, 256, 256);
- *(3) axis = 1;
- *(4) offset = (25, 128, 128);
- *(5) y = x[:, 25:25 + size.shape[1], 128:128 + size.shape[2], 128:128 + size.shape[3]] . \n
-
- *@par Inputs:
- *Inputs include:
- * @li x: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32,int64, uint64.
- * @li size: A required Tensor. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64.
- *@par Attributes:
- *@li axis: A required int32, specifying the first dimension to crop. Defaults to "2".
- *@li offset: A required array, specifying the shift for all/each dimension to align the cropped bottom with the reference bottom. Must be one of the following types: float16, float32, int8, uint8, int16, uint16, int32, uint32, int64, uint64.
- *@par Outputs:
- *y: A required Tensor. Has the same type and shape as "size" . \n
-
- *@attention Constraints:
- *@li "y" must have the same type and shape as "size". "x" must have the same type as "size".
- *@li "axis" must be less than the rank of "x".
- *@li The "offset" for each dimension must not exceed the maximum value of the corresponding dimension of "x".
- *@li The array length of "offset" plus the value of "axis" equals to the rank of "y".
- *@par Third-party framework compatibility
- * Compatible with the Caffe operator Crop.
- */
- REG_OP(Crop)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64}))
- .INPUT(size, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT,DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32, DT_UINT32,DT_INT64,DT_UINT64}))
- .ATTR(axis, Int, 2)
- .REQUIRED_ATTR(offsets, ListInt)
- .OP_END_FACTORY_REG(Crop)
-
- /**
- *@brief Extends the input with copies of data along a specified dimension. For example:
- *(1) If x = [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]], with shape (2, 3, 2);
- *(2) axis = 1;
- *(3) tiles = 2;
- *(4) Then, y = [[[1, 2], [3, 4], [5, 6], [1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12], [7, 8], [9, 10], [11, 12]]], with shape (2, 6, 2) . \n
-
- *@par Inputs:
- * One input:
- *input_x: A Tensor with any format. Must be one of the following types: float16, float32, int8, int16, int32, int64, uint8, uint16, uint32, uint64 . \n
-
- *@par Attributes:
- *@li axis: An optional int32, specifying the axis to tile. Defaults to 1.
- *@li tiles: A required int32, specifying the number of copies (tiles) to output . \n
-
- *@par Outputs:
- *output_y: A Tensor of any format. Must be one of the following types: float16, float32, int8, int16, int32, int64, uint8, uint16, uint32, uint64 . \n
-
- *@attention Constraints:
- *@li "axis" must be within the rank of the input tensor.
- *@li "tiles" must be greater than 1.
- *@par Third-party framework compatibility
- * Compatible with the Caffe operator Tile.
- */
- REG_OP(TileWithAxis)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT64, DT_INT32,
- DT_INT16, DT_INT8, DT_UINT64, DT_UINT32, DT_UINT16, DT_UINT8}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_INT64, DT_INT32,
- DT_INT16, DT_INT8, DT_UINT64, DT_UINT32, DT_UINT16, DT_UINT8}))
- .ATTR(axis, Int, 1)
- .REQUIRED_ATTR(tiles, Int)
- .OP_END_FACTORY_REG(TileWithAxis)
-
- /**
- *@brief Read data with offset and stride . \n
-
- *@par Inputs:
- *One input:
- *x: A Tensor. Must be one of the following types: float16, int8 . \n
-
- *@par Attributes:
- *@li stride_list: An optional 5D list of type int32. Defaults to "[1,1,1,1,1]" . \n
-
- *@par Outputs:
- *y: A Tensor of the same type as "x".
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(ReadSelect)
- .INPUT(x, TensorType::ALL())
- .OUTPUT(y, TensorType::ALL())
- .ATTR(stride_list, ListInt, {1,1,1,1,1})
- .OP_END_FACTORY_REG(ReadSelect)
-
- /**
- *@brief: Write data with offset . \n
-
- *@par Inputs:
- *x: A Tensor. Must be one of the following types: int32, float32, float16, int8 . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
-
- *@par Restrictions:
- *Warning: THIS FUNCTION IS EXPERIMENTAL. Please do not use.
- */
- REG_OP(WriteSelect)
- .INPUT(x, TensorType::ALL())
- .OUTPUT(y, TensorType::ALL())
- .OP_END_FACTORY_REG(WriteSelect)
-
- /**
- *@brief Read data by stride . \n
-
- *@par Inputs:
- *One input:
- *x: A Tensor. Must be one of the following types: float16, int8 . \n
-
- *@par Attributes:
- *@li axis: A required int32, specifying the index of axis to read by stride . \n
-
- *@par Attributes:
- *@li stride: A required int32, specifying the value of reading stride . \n
-
- *@par Outputs:
- *y: A Tensor of the same type as "x".
- */
- REG_OP(StridedRead)
- .INPUT(x, TensorType::ALL())
- .OUTPUT(y, TensorType::ALL())
- .ATTR(axis, Int, 1)
- .ATTR(stride, Int, 1)
- .OP_END_FACTORY_REG(StridedRead)
-
- /**
- *@brief: Write data by stride . \n
-
- *@par Inputs:
- *x: A Tensor. Must be one of the following types: float16, int8 . \n
-
- *@par Attributes:
- *@li axis: A required int32, specifying the index of axis to write by stride . \n
-
- *@par Attributes:
- *@li stride: A required int32, specifying the value of writing stride . \n
-
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- */
- REG_OP(StridedWrite)
- .INPUT(x, TensorType::ALL())
- .OUTPUT(y, TensorType::ALL())
- .ATTR(axis, Int, 1)
- .ATTR(stride, Int, 1)
- .OP_END_FACTORY_REG(StridedWrite)
-
- /**
- *@brief Computes the cumulative log sum exp of the tensor "x" along "axis" . \n
-
- *@par Inputs:
- * Two inputs, including:
- *@li x: A Tensor. Must be one of the following types: float32, float16.
- *@li axis A Tensor of type int32 or int16. Defaults to "0".
- *
- *@par Attributes:
- *@li exclusive: If "False", performs inclusive CumulativeLogsumexp, which means that the first element of the input is identical to the first element of the output. If "True", performs exclusive CumulativeLogsumexp.
- *@li reverse: A bool. Defaults to "False".
- *
- *@par Outputs:
- *@li y: A Tensor. Has the same type as "x".
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Cumsum.
- */
- REG_OP(CumulativeLogsumexp)
- .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .INPUT(axis, TensorType({DT_INT32, DT_INT16}))
- .OUTPUT(y, TensorType({DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .ATTR(exclusive, Bool, false)
- .ATTR(reverse, Bool, false)
- .OP_END_FACTORY_REG(CumulativeLogsumexp)
-
- /**
- *@brief Computes the cumulative log sum exp of the tensor "x" along "axis".
- *
- *@par Inputs:
- * One input:
- *x: A Tensor. Must be one of the following types: float32, float16.
- *
- *@par Attributes:
- *@li axis A Tensor of type int32 or int16. Defaults to "0".
- *@li exclusive: If "False", performs inclusive cumulativeLogsumexp, which means that the first element of the input is identical to the first element of the output. If "True", performs exclusive CumulativeLogsumexp.
- *@li reverse: A bool. Defaults to "False".
- *
- *@par Outputs:
- *y: A Tensor. Has the same type as "x".
- *@par Third-party framework compatibility
- * Compatible with the TensorFlow operator Cumsum.
- *
- * @par Restrictions:
- * Warning: THIS FUNCTION IS DEPRECATED. Please use CumulativeLogsumexp instead.
- */
- REG_OP(CumulativeLogsumexpD)
- .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .OUTPUT(y, TensorType({DT_DOUBLE, DT_FLOAT, DT_FLOAT16}))
- .REQUIRED_ATTR(axis, Int)
- .ATTR(exclusive, Bool, false)
- .ATTR(reverse, Bool, false)
- .OP_END_FACTORY_REG(CumulativeLogsumexpD)
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_SELECTION_OPS_H_
|