|
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- /*!
- * \file sdca_ops.h
- * \brief
- */
- #ifndef OPS_BUILT_IN_OP_PROTO_INC_SDCA_OPS_H_
- #define OPS_BUILT_IN_OP_PROTO_INC_SDCA_OPS_H_
-
- #include "graph/operator.h"
- #include "graph/operator_reg.h"
-
- namespace ge {
-
- /**
- *@brief Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
- *linear models with L1 + L2 regularization. As global optimization objective is
- *strongly-convex, the optimizer optimizes the dual objective at each step. The
- *optimizer applies each update one example at a time. Examples are sampled
- *uniformly, and the optimizer is learning rate free and enjoys linear convergence
- *rate . \n
-
- *@par Inputs:
- *@li sparse_example_indices: a list of vectors which contain example indices.It's a dynamic input.
- *@li sparse_feature_indices: a list of vectors which contain feature indices.It's a dynamic input.
- *@li sparse_feature_values: a list of vectors which contains feature value associated with each feature group.It's a dynamic input.
- *@li dense_features: a list of matrices which contains the dense feature values.It's a dynamic input.
- *@li example_weights: a vector which contains the weight associated with each example.
- *@li example_labels: a vector which contains the label/target associated with each example.
- *@li sparse_indices: a list of vectors where each value is the indices which has
- *corresponding weights in sparse_weights. This field maybe omitted for the dense approach.It's a dynamic input.
- *@li sparse_weights: a list of vectors where each value is the weight associated with a sparse feature group.
- *@li dense_weights: a list of vectors where the values are the weights associated with a dense feature group.It's a dynamic input.
- *@li example_state_data: a list of vectors containing the example state data.
- *@li loss_type: Type of the primal loss. Currently SdcaSolver supports logistic, squared and hinge losses.
- *@li l1: Symmetric l1 regularization strength.
- *@li l2: Symmetric l2 regularization strength.
- *@li num_loss_partitions: Number of partitions of the global loss function.
- *@li num_inner_iterations: Number of iterations per mini-batch . \n
-
- *@par Outputs:
- *y: A Returns a list of vectors containing the updated example state
- *data.a list of vectors where each value is the delta
- *weights associated with a sparse feature group.a list of vectors where the values are the delta
- *weights associated with a dense feature group . \n
-
- *@par Third-party framework compatibility
- * Compatible with tensorflow SdcaOptimizerV2 operator.
- */
-
- REG_OP(SdcaOptimizerV2)
- .DYNAMIC_INPUT(sparse_example_indices, TensorType({DT_INT64}))
- .DYNAMIC_INPUT(sparse_feature_indices, TensorType({DT_INT64}))
- .DYNAMIC_INPUT(sparse_feature_values, TensorType({DT_FLOAT}))
- .DYNAMIC_INPUT(dense_features, TensorType({DT_FLOAT}))
- .INPUT(example_weights, TensorType({DT_FLOAT}))
- .INPUT(example_labels, TensorType({DT_FLOAT}))
- .DYNAMIC_INPUT(sparse_indices, TensorType({DT_INT64}))
- .DYNAMIC_INPUT(sparse_weights, TensorType({DT_FLOAT}))
- .DYNAMIC_INPUT(dense_weights, TensorType({DT_FLOAT}))
- .INPUT(example_state_data, TensorType({DT_FLOAT}))
- .OUTPUT(out_example_state_data, TensorType({DT_FLOAT}))
- .DYNAMIC_OUTPUT(out_delta_sparse_weights, TensorType({DT_FLOAT}))
- .DYNAMIC_OUTPUT(out_delta_dense_weights, TensorType({DT_FLOAT}))
- .ATTR(adaptive, Bool, false)
- .ATTR(num_sparse_features, Int, 0)
- .ATTR(num_sparse_features_with_values, Int, 0)
- .ATTR(num_dense_features, Int, 0)
- .ATTR(num_loss_partitions, Int, 1)
- .ATTR(num_inner_iterations, Int, 1)
- .ATTR(loss_type, String, "logistic_loss")
- .ATTR(l1, Float, 0.5)
- .ATTR(l2, Float, 0.5)
- .OP_END_FACTORY_REG(SdcaOptimizerV2)
-
- } // namespace ge
-
- #endif // OPS_BUILT_IN_OP_PROTO_INC_SDCA_OPS_H_
|