|
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include "host_kernels/dynamic_stitch_kernel.h"
-
- #include <securec.h>
- #include <memory>
-
- #include "common/fp16_t.h"
- #include "framework/common/ge_inner_error_codes.h"
- #include "common/math/math_util.h"
- #include "framework/common/op/ge_op_utils.h"
- #include "framework/common/types.h"
- #include "framework/common/debug/ge_log.h"
- #include "graph/utils/type_utils.h"
- #include "inc/kernel_factory.h"
-
- namespace ge {
- namespace {
- const int kDoubleAttrN = 2;
- const int kFirstOutputDescIdx = 0;
- const int kMergedShapeSecondDim = 1;
- const size_t kNullTensorDimNum = 1;
- const int64_t kNullTensorDimValue = 0;
- const std::set<DataType> kSupportedTypeSet = {DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, DT_INT32,
- DT_INT64, DT_BOOL, DT_FLOAT16, DT_FLOAT, DT_DOUBLE};
- } // namespace
- Status DynamicStitchKernel::Compute(const OpDescPtr op_desc_ptr, const vector<ConstGeTensorPtr> &input,
- vector<GeTensorPtr> &v_output) {
- GELOGD("DynamicStitch Kernel in.");
- Status validate_ret = ValidateParams(op_desc_ptr, input);
- if (validate_ret != SUCCESS) {
- GELOGW("Dynamic stitch kernel params validate failed.");
- return NOT_CHANGED;
- }
-
- // OutputDesc size is not null, validated before
- GeTensorPtr output_ptr = MakeShared<GeTensor>(op_desc_ptr->GetOutputDesc(kFirstOutputDescIdx));
- if (output_ptr == nullptr) {
- GELOGW("Fail to malloc output.");
- return NOT_CHANGED;
- }
- Status ret = GenData(input, output_ptr);
- if (ret != SUCCESS) {
- GELOGW("Dynamic stitch folding failed.");
- return NOT_CHANGED;
- }
- v_output.push_back(output_ptr);
- GELOGD("Dynamic stitch end.");
- return SUCCESS;
- }
-
- Status DynamicStitchKernel::ValidateParams(const OpDescPtr &op_desc_ptr, const std::vector<ConstGeTensorPtr> &input) {
- if (op_desc_ptr == nullptr) {
- GELOGW("Input op_desc is nullptr.");
- return PARAM_INVALID;
- }
- if (op_desc_ptr->GetOutputsSize() == 0) {
- GELOGW("Current output_desc is empty.");
- return PARAM_INVALID;
- }
- // validate input
- // input[0]~input[N-1] is indices, input[N]~input[2N-1] is data
- if (input.empty()) {
- GELOGI("Input is empty. Ignore dynamic stitch kernel.");
- return NOT_CHANGED;
- }
- for (const auto &in : input) {
- if (in == nullptr) {
- GELOGW("input is nullptr.");
- return PARAM_INVALID;
- }
- }
- // validate attrs
- if (!(AttrUtils::GetInt(op_desc_ptr, ATTR_NAME_N, n_))) {
- GELOGW("Attr %s is not exist.", ATTR_NAME_N.c_str());
- return NOT_CHANGED;
- }
- // validate attr N and input.size
- if ((kDoubleAttrN * n_) > static_cast<int>(input.size())) {
- GELOGW("Input size %zu is not not match with attr %d. Ignore dynamic stitch kernel.", input.size(), n_);
- return NOT_CHANGED;
- }
- // validate supported datatype
- DataType data_type = input[n_]->GetTensorDesc().GetDataType();
- if (kSupportedTypeSet.find(data_type) == kSupportedTypeSet.end()) {
- GELOGW("Input data_type %s is not supported. Please check IR definition. Ignore dynamic stitch kernel.",
- TypeUtils::DataTypeToSerialString(data_type).c_str());
- return NOT_CHANGED;
- }
- return SUCCESS;
- }
-
- void DynamicStitchKernel::ComputeMergedShape(const vector<ConstGeTensorPtr> &input, GeShape &merged_shape) {
- // Safety note: index [1~2*n_] for input is valid, and all input is not null, validated in ValidateParams
- // merged.shape = [max(indices)] + step
- // 1. Compute merged first dim, which is the max index.
- int32_t merged_first_dim = 0;
- int64_t indices_shape_size = 0;
- for (int i = 0; i < n_; i++) {
- // shape is [] means scalar
- indices_shape_size =
- input[i]->GetTensorDesc().GetShape().GetDims().empty() ? 1 : input[i]->GetTensorDesc().GetShape().GetShapeSize();
- const int32_t *input_indices = reinterpret_cast<const int32_t *>(input[i]->GetData().data());
- for (int64_t j = 0; j < indices_shape_size; j++) {
- merged_first_dim = std::max(merged_first_dim, input_indices[j]);
- }
- }
- // 2. Compute step, which is follow : step = data[t].shape - indices[t].shape
- size_t indices_dim_num = input[0]->GetTensorDesc().GetShape().GetDimNum();
- GeShape data_shape = input[n_]->GetTensorDesc().GetShape();
- int64_t step = (data_shape.GetDimNum() == indices_dim_num) ? 0 : data_shape.GetDim(indices_dim_num);
-
- vector<int64_t> merged_dim_vec = {merged_first_dim + 1};
- if (step > 0) {
- merged_dim_vec.emplace_back(step);
- GELOGD("merged_shape is [ %d, %ld].", merged_first_dim, step);
- }
- merged_shape = GeShape(merged_dim_vec);
- GELOGD("merged_shape is [ %d ].", merged_first_dim);
- }
-
- Status DynamicStitchKernel::GenData(const vector<ConstGeTensorPtr> &input, GeTensorPtr &output_ptr) {
- // Safety note: index [1~2*n_] for input is valid, and all input is not null, validated in ValidateParams
- GeShape merged_shape;
- ComputeMergedShape(input, merged_shape);
- auto data_type = input[n_]->GetTensorDesc().GetDataType();
-
- // 1.calc output data size
- auto output_size = merged_shape.GetShapeSize();
- int64_t data_size = GetSizeByDataType(data_type);
- auto step = merged_shape.GetDim(kMergedShapeSecondDim);
- if (!CheckInt64MulOverflow(output_size, data_size) || !CheckInt64MulOverflow(step, data_size)) {
- GELOGW("Check int64 mul overflow failed. Output_size is %ld, data_size is %ld, step is %ld.", output_size,
- data_size, step);
- return NOT_CHANGED;
- }
- auto allowance = output_size * data_size;
- auto data_unit = step > 0 ? step * data_size : data_size;
- // 2.allocate memery for output
- std::unique_ptr<uint8_t[]> buf(new (std::nothrow) uint8_t[allowance]);
- if (buf == nullptr) {
- GELOGW("new buffer failed");
- return INTERNAL_ERROR;
- }
- // 3.copy data from input_data along with the sequence of input_indices
- Status stitch_ret = StitchDataFollowIndices(data_unit, input, allowance, buf);
- if (stitch_ret != SUCCESS) {
- GELOGW("Stitch data follow index failed.");
- return NOT_CHANGED;
- }
-
- output_ptr->MutableTensorDesc().SetDataType(data_type);
- output_ptr->MutableTensorDesc().SetShape(merged_shape);
- Status ret = output_ptr->SetData(buf.get(), allowance);
- if (ret != GRAPH_SUCCESS) {
- GELOGW("set data failed");
- return NOT_CHANGED;
- }
- return SUCCESS;
- }
-
- Status DynamicStitchKernel::StitchDataFollowIndices(int64_t data_unit, const vector<ConstGeTensorPtr> &input,
- int64_t allowance, std::unique_ptr<uint8_t[]> &buf) {
- // Safety note: index [1~2*n_] for input is valid, and all input is not null, validated in ValidateParams
- int64_t dst_offset = 0;
- int64_t src_offset = 0;
- std::set<int32_t> indices_set;
- for (int i = 0; i < n_; i++) {
- GeShape indices_shape = input[i]->GetTensorDesc().GetShape();
- size_t indices_dim_num = indices_shape.GetDimNum();
- // skip null indices tensor
- if (indices_dim_num == kNullTensorDimNum && indices_shape.GetDim(0) == kNullTensorDimValue) {
- GELOGD("Input indices[%d] has null tensor, skip it.", i);
- continue;
- }
- auto indices_shape_size = indices_shape.GetShapeSize();
- // to normalize logic, assume scalar as vector with shape of [1].
- indices_shape_size = (indices_shape_size == 0) ? 1 : indices_shape_size;
- // all index for input is less than size of input
- const int32_t *input_indices = reinterpret_cast<const int32_t *>(input[i]->GetData().data());
- const uint8_t *input_data = input[i + n_]->GetData().data();
- for (int64_t j = 0; j < indices_shape_size; j++) {
- // if index repeated, need new data replace old data , so give more allowance
- if (indices_set.find(input_indices[j]) != indices_set.end()) {
- if (ge::CheckInt64AddOverflow(input_indices[j], data_unit) != SUCCESS) {
- GELOGW("Check int64 mul overflow failed. Indices is %d, data_unit is %ld.", input_indices[j], data_unit);
- return NOT_CHANGED;
- }
- allowance += data_unit;
- }
- indices_set.insert(input_indices[j]);
- if (!CheckInt64MulOverflow(input_indices[j], data_unit)) {
- GELOGW("Check int64 mul overflow failed. Indices is %d, data_unit is %ld.", input_indices[j], data_unit);
- return NOT_CHANGED;
- }
- dst_offset = input_indices[j] * data_unit;
- src_offset = j * data_unit;
- auto protected_size =
- allowance < static_cast<int64_t>(SECUREC_MEM_MAX_LEN) ? allowance : static_cast<int64_t>(SECUREC_MEM_MAX_LEN);
- auto ret = memcpy_s(buf.get() + dst_offset, protected_size, input_data + src_offset, data_unit);
- if (ret != EOK) {
- GELOGW("Memory copy failed.");
- return NOT_CHANGED;
- }
- allowance -= data_unit;
- }
- }
- return SUCCESS;
- }
-
- REGISTER_KERNEL(DYNAMICSTITCH, DynamicStitchKernel);
- } // namespace ge
|