|
- /**
- * This file is part of Open Source Software TensorFlow, version 1.15.0 https://github.com/tensorflow/tensorflow
- *
- * This file is included by GraphEngine so as to support model format conversion from tensorflow model to GraphEngine model.
- * This file in this distribution may have been modified by Huawei Technologies Co., Ltd ("Huawei Modifications").
- * All Huawei Modifications are Copyright 2019-2020 Huawei Technologies Co., Ltd.
- */
-
- syntax = "proto3";
-
- package domi.tensorflow;
- option cc_enable_arenas = true;
- option java_outer_classname = "FunctionProtos";
- option java_multiple_files = true;
- option java_package = "org.tensorflow.framework";
-
- import "attr_value.proto";
- import "node_def.proto";
- import "op_def.proto";
-
- // A library is a set of named functions.
- message FunctionDefLibrary {
- repeated FunctionDef function = 1;
- repeated GradientDef gradient = 2;
- }
-
- // A function can be instantiated when the runtime can bind every attr
- // with a value. When a GraphDef has a call to a function, it must
- // have binding for every attr defined in the signature.
- // * device spec, etc.
- message FunctionDef {
- // The definition of the function's name, arguments, return values,
- // attrs etc.
- OpDef signature = 1;
-
- // Attributes specific to this function definition.
- map<string, AttrValue> attr = 5;
-
- // NOTE: field id 2 deleted on Jan 11, 2017, GraphDef version 21.
- reserved 2;
-
- // In both of the following fields, there is the need to specify an
- // output that is used as either the input to another node (in
- // `node_def`) or as a return value of the function (in `ret`).
- // Unlike the NodeDefs in GraphDef, we need to be able to specify a
- // list in some cases (instead of just single outputs). Also, we
- // need to be able to deal with lists of unknown length (so the
- // output index may not be known at function definition time). So
- // we use the following format instead:
- // * "fun_in" where "fun_in" is the name of a function input arg in
- // the `signature` field above. This represents that input, whether
- // it is a single tensor or a list.
- // * "fun_in:0" gives the first element of a function input arg (a
- // non-list input is considered a list of length 1 for these
- // purposes).
- // * "node:out" where "node" is the name of a node in `node_def` and
- // "out" is the name one of its op's output arguments (the name
- // comes from the OpDef of the node's op). This represents that
- // node's output, whether it is a single tensor or a list.
- // Note: We enforce that an op's output arguments are never
- // renamed in the backwards-compatibility test.
- // * "node:out:0" gives the first element of a node output arg (a
- // non-list output is considered a list of length 1 for these
- // purposes).
- //
- // NOT CURRENTLY SUPPORTED (but may be in the future):
- // * "node:out:-1" gives last element in a node output list
- // * "node:out:1:" gives a list with all but the first element in a
- // node output list
- // * "node:out::-1" gives a list with all but the last element in a
- // node output list
-
- // The body of the function. Unlike the NodeDefs in a GraphDef, attrs
- // may have values of type `placeholder` and the `input` field uses
- // the "output" format above.
-
- // By convention, "op" in node_def is resolved by consulting with a
- // user-defined library first. If not resolved, "func" is assumed to
- // be a builtin op.
- repeated NodeDef node_def = 3;
-
- // A mapping from the output arg names from `signature` to the
- // outputs from `node_def` that should be returned by the function.
- map<string, string> ret = 4;
- }
-
- // GradientDef defines the gradient function of a function defined in
- // a function library.
- //
- // A gradient function g (specified by gradient_func) for a function f
- // (specified by function_name) must follow the following:
- //
- // The function 'f' must be a numerical function which takes N inputs
- // and produces M outputs. Its gradient function 'g', which is a
- // function taking N + M inputs and produces N outputs.
- //
- // I.e. if we have
- // (y1, y2, ..., y_M) = f(x1, x2, ..., x_N),
- // then, g is
- // (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N,
- // dL/dy1, dL/dy2, ..., dL/dy_M),
- // where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the
- // loss function). dL/dx_i is the partial derivative of L with respect
- // to x_i.
- message GradientDef {
- string function_name = 1; // The function name.
- string gradient_func = 2; // The gradient function's name.
- }
|