|
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include "host_kernels/reduce_prod_kernel.h"
-
- #include <memory>
- #include <set>
-
- #include "common/math/math_util.h"
- #include "common/op/ge_op_utils.h"
- #include "common/types.h"
- #include "framework/common/debug/ge_log.h"
- #include "framework/common/ge_inner_error_codes.h"
- #include "host_kernels/kernel_utils.h"
- #include "graph/utils/type_utils.h"
- #include "inc/kernel_factory.h"
-
- namespace ge {
- namespace {
- const size_t kReduceProdDataIndex = 0;
- const size_t kReduceProdAxisIndex = 1;
- const size_t kReduceProdMaxAxisRank = 1;
- const size_t kReduceProdInputOnlyData = 1;
- const size_t kReduceProdInputSize = 2;
- const std::set<DataType> kReduceProdSupportedType = {DT_INT32};
- } // namespace
-
- Status ReduceProdKernel::ReduceProdCheck(const ge::OpDescPtr &op_desc_ptr,
- const std::vector<ge::ConstGeTensorPtr> &input) const {
- if (op_desc_ptr == nullptr) {
- GELOGW("Input opdesc is nullptr.");
- return PARAM_INVALID;
- }
- if (input.size() != kReduceProdInputSize) {
- if (input.size() == kReduceProdInputOnlyData) {
- // Input only data, which means calculate product for all elements in data_tensor.
- GELOGI("ReduceProd node input size is 1, which does not have param axis, node name %s",
- op_desc_ptr->GetName().c_str());
- return NOT_CHANGED;
- }
- GELOGW("Unexpected ReduceProd node, node input size: %zu, node name: %s", input.size(),
- op_desc_ptr->GetName().c_str());
- return PARAM_INVALID;
- }
- ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
- ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
- GE_CHECK_NOTNULL(data_tensor);
- GE_CHECK_NOTNULL(axis_tensor);
- if (axis_tensor->GetTensorDesc().GetShape().GetDimNum() > kReduceProdMaxAxisRank) {
- GELOGW("Axis must be at most rank 1, node: %s", op_desc_ptr->GetName().c_str());
- return PARAM_INVALID;
- }
-
- DataType data_type = data_tensor->GetTensorDesc().GetDataType();
- if (kReduceProdSupportedType.find(data_type) == kReduceProdSupportedType.end()) {
- GELOGW("ReduceProdKernel data type %s not support, node name: %s",
- TypeUtils::DataTypeToSerialString(data_type).c_str(), op_desc_ptr->GetName().c_str());
- return PARAM_INVALID;
- }
-
- return SUCCESS;
- }
-
- Status ReduceProdKernel::AxisCal(const std::vector<ge::ConstGeTensorPtr> &input) {
- ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
- ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
- // support: compute for the first element of axis.
- vector<int64_t> data_dims = data_tensor->GetTensorDesc().GetShape().GetDims();
- size_t data_dim_size = data_dims.size();
- int32_t *axis = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(axis_tensor->GetData().GetData()));
- GE_CHECK_NOTNULL(axis);
- if (static_cast<size_t>(*axis) >= data_dim_size) {
- GELOGW("axis is out of rank of data_dims, axis is %d.", *axis);
- return PARAM_INVALID;
- }
- axis_dim_ = data_dims[static_cast<size_t>(*axis)];
- head_dim_ = 1;
- end_dim_ = 1;
- bool axis_appear = false;
- for (size_t i = 0; i < data_dim_size; i++) {
- if (i == static_cast<size_t>(*axis)) {
- axis_appear = true;
- continue;
- }
- // data_dims is the vector of dims, element in data_dims isn't negative.
- if (axis_appear) {
- if (data_dims[i] != 0 && end_dim_ > (INT64_MAX / data_dims[i])) {
- GELOGW("Product is overflow. multiplier 1: %ld. multiplier 2: %ld.", end_dim_, data_dims[i]);
- return INTERNAL_ERROR;
- }
- end_dim_ *= data_dims[i];
- } else {
- if (data_dims[i] != 0 && head_dim_ > (INT64_MAX / data_dims[i])) {
- GELOGW("Product is overflow. multiplier 1: %ld. multiplier 2: %ld.", head_dim_, data_dims[i]);
- return INTERNAL_ERROR;
- }
- head_dim_ *= data_dims[i];
- }
- }
- return SUCCESS;
- }
-
- Status ReduceProdKernel::DataCal(const std::vector<ge::ConstGeTensorPtr> &input, ge::GeTensorPtr output_ptr) {
- ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
- DataType data_dtype = data_tensor->GetTensorDesc().GetDataType();
- if (data_dtype == DT_INT32) {
- int32_t *input_data = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(data_tensor->GetData().GetData()));
- GE_CHECK_NOTNULL(input_data);
- size_t data_num = data_tensor->GetData().size() / sizeof(int32_t);
- unique_ptr<int32_t[]> buf(new (std::nothrow) int32_t[data_num]());
- if (buf == nullptr) {
- GELOGW("new buf failed");
- return INTERNAL_ERROR;
- }
-
- int32_t tmp_x = 1;
- int32_t tmp_y = 1;
- for (int64_t i = 0; i < head_dim_; ++i) {
- for (int64_t j = 0; j < end_dim_; ++j) {
- // all index for input_data is less than size of input_data
- tmp_x = input_data[static_cast<size_t>(i * end_dim_ * axis_dim_ + j)];
- for (int64_t k = 1; k < axis_dim_; ++k) {
- tmp_y = input_data[static_cast<size_t>(i * end_dim_ * axis_dim_ + j + k * end_dim_)];
- if (ge::CheckInt32MulOverflow(tmp_x, tmp_y) != SUCCESS) {
- GELOGW("Product is overflow. multiplier 1: %d. multiplier 2: %d.", tmp_x, tmp_y);
- return INTERNAL_ERROR;
- }
- tmp_x *= tmp_y;
- }
- buf[static_cast<size_t>(i * end_dim_ + j)] = tmp_x;
- }
- }
-
- GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()),
- static_cast<size_t>(head_dim_ * end_dim_ * sizeof(int32_t))) != GRAPH_SUCCESS,
- GELOGW("set data failed");
- return INTERNAL_ERROR);
- }
- return SUCCESS;
- }
-
- void ReduceProdKernel::ShapeCal(const ge::OpDescPtr &op_desc_ptr, const std::vector<ge::ConstGeTensorPtr> &input,
- ge::GeTensorPtr output_ptr) {
- ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
- ConstGeTensorPtr axis_tensor = input.at(kReduceProdAxisIndex);
- vector<int64_t> data_dims = data_tensor->GetTensorDesc().GetShape().GetDims();
- int32_t data_dim_size = static_cast<int32_t>(data_dims.size());
- const uint8_t *axis_data = axis_tensor->GetData().GetData();
- GE_CHECK_NOTNULL_EXEC(axis_data, return);
- int32_t axis = *(const_cast<int32_t *>(reinterpret_cast<const int32_t *>(axis_data)));
- bool keep_dims = false;
- if (!AttrUtils::GetBool(op_desc_ptr, "keep_dims", keep_dims)) {
- GELOGI("Get the attr keep_dims was failed.");
- }
-
- if (keep_dims) {
- for (int32_t i = 0; i < data_dim_size; i++) {
- if (i == axis) {
- data_dims[i] = 1;
- }
- }
- } else {
- vector<int64_t> tmp_dims;
- for (int32_t i = 0; i < data_dim_size; i++) {
- if (i != axis) {
- tmp_dims.push_back(data_dims[i]);
- }
- }
- data_dims.clear();
- data_dims = tmp_dims;
- }
- output_ptr->MutableTensorDesc().SetShape(GeShape(data_dims));
- }
-
- Status ReduceProdKernel::ComputeNoAxis(const ge::OpDescPtr &op_desc_ptr, const std::vector<ConstGeTensorPtr> &input,
- ge::GeTensorPtr output_ptr) {
- ConstGeTensorPtr data_tensor = input.at(kReduceProdDataIndex);
- GE_CHECK_NOTNULL(data_tensor);
- if (data_tensor->GetData().size() == 0) {
- GELOGW("ReduceProdKernel data size of inputs is 0, node node: %s", op_desc_ptr->GetName().c_str());
- return PARAM_INVALID;
- }
- DataType data_type = data_tensor->GetTensorDesc().GetDataType();
- if (kReduceProdSupportedType.find(data_type) == kReduceProdSupportedType.end()) {
- GELOGW("ReduceProdKernel data type %s not support, node name: %s",
- TypeUtils::DataTypeToSerialString(data_type).c_str(), op_desc_ptr->GetName().c_str());
- return PARAM_INVALID;
- }
-
- if (data_type == DT_INT32) {
- int32_t *input_data = const_cast<int32_t *>(reinterpret_cast<const int32_t *>(data_tensor->GetData().GetData()));
- GE_CHECK_NOTNULL(input_data);
- size_t data_num = data_tensor->GetData().size() / sizeof(int32_t);
- unique_ptr<int32_t[]> buf(new (std::nothrow) int32_t[data_num]());
- if (buf == nullptr) {
- GELOGW("new buf failed");
- return INTERNAL_ERROR;
- }
-
- int32_t tmp_x = input_data[0];
- int32_t tmp_y = 1;
- for (size_t k = 1; k < data_num; ++k) {
- tmp_y = input_data[k];
- if (ge::CheckInt32MulOverflow(tmp_x, tmp_y) != SUCCESS) {
- GELOGW("Product is overflow. multiplier 1: %d. multiplier 2: %d.", tmp_x, tmp_y);
- return INTERNAL_ERROR;
- }
- tmp_x *= tmp_y;
- }
- buf[0] = tmp_x;
- GE_IF_BOOL_EXEC(output_ptr->SetData(reinterpret_cast<uint8_t *>(buf.get()), sizeof(int32_t)) != GRAPH_SUCCESS,
- GELOGW("set data failed");
- return INTERNAL_ERROR);
- output_ptr->MutableTensorDesc().SetDataType(data_type);
- output_ptr->MutableTensorDesc().SetShape(GeShape());
- }
- return SUCCESS;
- }
-
- Status ReduceProdKernel::Compute(const ge::OpDescPtr op_desc_ptr, const std::vector<ge::ConstGeTensorPtr> &input,
- std::vector<ge::GeTensorPtr> &v_output) {
- GELOGI("ReduceProdKernel in.");
- Status ret = ReduceProdCheck(op_desc_ptr, input);
- if (ret != SUCCESS && ret != NOT_CHANGED) {
- GELOGW("ReduceProdKernel input is invalid, failed to fold node.");
- return NOT_CHANGED;
- }
-
- // Index 0 can always gets a GeTensorDesc object from any OpDescPtr.
- auto output_tensor_desc = op_desc_ptr->GetOutputDesc(0);
- GeTensorPtr output_ptr = MakeShared<GeTensor>(output_tensor_desc);
- if (output_ptr == nullptr) {
- GELOGW("make_shared ge::GeTensor failed, node name %s.", op_desc_ptr->GetName().c_str());
- return NOT_CHANGED;
- }
-
- if (ret == NOT_CHANGED) {
- // compute output tensor when no param axis
- ret = ComputeNoAxis(op_desc_ptr, input, output_ptr);
- if (ret != SUCCESS) {
- return NOT_CHANGED;
- }
- } else if (input.at(kReduceProdAxisIndex)->GetData().size() == 0) {
- // axis tensor value is [], means no process for input
- output_ptr->MutableTensorDesc().SetShape(input.at(kReduceProdDataIndex)->GetTensorDesc().GetShape());
- output_ptr->MutableTensorDesc().SetDataType(input.at(kReduceProdDataIndex)->GetTensorDesc().GetDataType());
- if (output_ptr->SetData(input.at(kReduceProdDataIndex)->GetData()) != GRAPH_SUCCESS) {
- GELOGW("Compute: SetData failed");
- }
- } else {
- // calculate axis to reduce
- ret = AxisCal(input);
- if (ret != SUCCESS) {
- return NOT_CHANGED;
- }
- // calculate and set shape
- ShapeCal(op_desc_ptr, input, output_ptr);
- // set data type
- output_ptr->MutableTensorDesc().SetDataType(input.at(kReduceProdDataIndex)->GetTensorDesc().GetDataType());
-
- // data size == 0 means input tensor has zero in shape, and tensor value is [].
- if (input.at(kReduceProdDataIndex)->GetData().size() != 0) {
- // calculate data and data type
- ret = DataCal(input, output_ptr);
- if (ret != SUCCESS) {
- return NOT_CHANGED;
- }
- }
- }
-
- // print output tensor information, and will be deleted
- GELOGD("ReduceProd op %s output tensor data size is %zu", op_desc_ptr->GetName().c_str(),
- output_ptr->GetData().size());
- vector<int64_t> data_dims = output_ptr->GetTensorDesc().GetShape().GetDims();
- GELOGD("ReduceProd op %s output tensor dim size is %zu", op_desc_ptr->GetName().c_str(), data_dims.size());
-
- v_output.emplace_back(output_ptr);
- GELOGI("ReduceProdKernel success.");
- return SUCCESS;
- }
- REGISTER_KERNEL(REDUCEPROD, ReduceProdKernel);
- } // namespace ge
|